Jeremy Nathans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1488377/publications.pdf Version: 2024-02-01

IEDEMY NATHANS

#	Article	IF	CITATIONS
1	The WNT7A/WNT7B/GPR124/RECK signaling module plays an essential role in mammalian limb development. Development (Cambridge), 2022, 149, .	1.2	4
2	Signaling Pathways in Neurovascular Development. Annual Review of Neuroscience, 2022, 45, 87-108.	5.0	8
3	A transcriptome atlas of the mouse iris at single-cell resolution defines cell types and the genomic response to pupil dilation. ELife, 2021, 10, .	2.8	6
4	Structure of the RECK CC domain, an evolutionary anomaly. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15104-15111.	3.3	10
5	A mouse model for kinesin family member 11 (Kif11)-associated familial exudative vitreoretinopathy. Human Molecular Genetics, 2020, 29, 1121-1131.	1.4	20
6	A genome-wide view of the de-differentiation of central nervous system endothelial cells in culture. ELife, 2020, 9, .	2.8	41
7	Developmental, cellular, and behavioral phenotypes in a mouse model of congenital hypoplasia of the dentate gyrus. ELife, 2020, 9, .	2.8	2
8	Defining the binding interface of Amyloid Precursor Protein (APP) and Contactin3 (CNTN3) by site-directed mutagenesis. PLoS ONE, 2019, 14, e0219384.	1.1	3
9	Hypoxia tolerance in the Norrin-deficient retina and the chronically hypoxic brain studied at single-cell resolution. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9103-9114.	3.3	44
10	Comprehensive analysis of a mouse model of spontaneous uveoretinitis using single-cell RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26734-26744.	3.3	33
11	Roles of HIFs and VEGF in angiogenesis in the retina and brain. Journal of Clinical Investigation, 2019, 129, 3807-3820.	3.9	117
12	Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. ELife, 2019, 8, .	2.8	74
13	Dlg1 activates beta-catenin signaling to regulate retinal angiogenesis and the blood-retina and blood-brain barriers. ELife, 2019, 8, .	2.8	17
14	Molecular determinants in Frizzled, Reck, and Wnt7a for ligand-specific signaling in neurovascular development. ELife, 2019, 8, .	2.8	32
15	Interplay of the Norrin and Wnt7a/Wnt7b signaling systems in blood–brain barrier and blood–retina barrier development and maintenance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11827-E11836.	3.3	105
16	Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. ELife, 2018, 7, .	2.8	180
17	Affinity capture of polyribosomes followed by RNAseq (ACAPseq), a discovery platform for protein-protein interactions. ELife, 2018, 7, .	2.8	12
18	Intramembrane Proteolysis of Astrotactins. Journal of Biological Chemistry, 2017, 292, 3506-3516.	1.6	5

#	Article	IF	CITATIONS
19	Help to make food go further in Egypt. Nature, 2017, 546, 210-210.	13.7	0
20	Cerebral Vein Malformations Result from Loss of Twist1 Expression and BMP Signaling from Skull Progenitor Cells and Dura. Developmental Cell, 2017, 42, 445-461.e5.	3.1	37
21	Reck and Gpr124 Are Essential Receptor Cofactors for Wnt7a/Wnt7b-Specific Signaling in Mammalian CNS Angiogenesis and Blood-Brain Barrier Regulation. Neuron, 2017, 95, 1056-1073.e5.	3.8	153
22	Peropsin modulates transit of vitamin A from retina to retinal pigment epithelium. Journal of Biological Chemistry, 2017, 292, 21407-21416.	1.6	13
23	Frizzled Receptors in Development and Disease. Current Topics in Developmental Biology, 2016, 117, 113-139.	1.0	112
24	Patterning of papillae on the mouse tongue: A system for the quantitative assessment of planar cell polarity signaling. Developmental Biology, 2016, 419, 298-310.	0.9	21
25	The Cellular Compass. Scientific American, 2016, 314, 67-71.	1.0	6
26	The spatio-temporal domains of Frizzled6 action in planar polarity control of hair follicle orientation. Developmental Biology, 2016, 409, 181-193.	0.9	33
27	Epigenomic landscapes of retinal rods and cones. ELife, 2016, 5, e11613.	2.8	106
28	How scientists can reduce their carbon footprint. ELife, 2016, 5, .	2.8	41
29	THE CELLULAR COMPASS. Scientific American, 2016, 314, 66-71.	1.0	1
30	Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems. Neural Development, 2015, 10, 21.	1.1	45
31	Sox7, Sox17, and Sox18 Cooperatively Regulate Vascular Development in the Mouse Retina. PLoS ONE, 2015, 10, e0143650.	1.1	74
32	Identification of Astrotactin2 as a Genetic Modifier That Regulates the Global Orientation of Mammalian Hair Follicles. PLoS Genetics, 2015, 11, e1005532.	1.5	20
33	Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain. Neuron, 2015, 86, 1369-1384.	3.8	640
34	Functional Assembly of Accessory Optic System Circuitry Critical for Compensatory Eye Movements. Neuron, 2015, 86, 971-984.	3.8	78
35	Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. ELife, 2015, 4,	2.8	182
36	Canonical WNT signaling components in vascular development and barrier formation. Journal of Clinical Investigation, 2014, 124, 3825-3846.	3.9	260

#	Article	IF	CITATIONS
37	Partial interchangeability of <i>Fz3</i> and <i>Fz6</i> in tissue polarity signaling for epithelial orientation and axon growth and guidance. Development (Cambridge), 2014, 141, 3944-3954.	1.2	28
38	<i>Frizzled3</i> is required for the development of multiple axon tracts in the mouse central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3005-14.	3.3	61
39	The Role of the Hypoxia Response in Shaping Retinal Vascular * Development in the Absence of Norrin/Frizzled4 Signaling. Investigative Ophthalmology and Visual Science, 2014, 55, 8614-8625.	3.3	27
40	Cellular Resolution Maps of X Chromosome Inactivation: Implications for Neural Development, Function, and Disease. Neuron, 2014, 81, 103-119.	3.8	179
41	Gpr124 Controls CNS Angiogenesis and Blood-Brain Barrier Integrity by Promoting Ligand-Specific Canonical Wnt Signaling. Developmental Cell, 2014, 31, 248-256.	3.1	218
42	Flat Mount Imaging of Mouse Skin and Its Application to the Analysis of Hair Follicle Patterning and Sensory Axon Morphology. Journal of Visualized Experiments, 2014, , e51749.	0.2	17
43	Complete morphologies of basal forebrain cholinergic neurons in the mouse. ELife, 2014, 3, e02444.	2.8	133
44	Responses of hair follicle–associated structures to loss of planar cell polarity signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E908-17.	3.3	29
45	Endothelin-2 signaling in the neural retina promotes the endothelial tip cell state and inhibits angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3830-9.	3.3	40
46	How to draw the line in biomedical research. ELife, 2013, 2, e00638.	2.8	5
47	Frizzled3 controls axonal development in distinct populations of cranial and spinal motor neurons. ELife, 2013, 2, e01482.	2.8	47
48	Combinatorial Expression of Brn3 Transcription Factors in Somatosensory Neurons: Genetic and Morphologic Analysis. Journal of Neuroscience, 2012, 32, 995-1007.	1.7	82
49	Norrin/Frizzled4 Signaling in Retinal Vascular Development and Blood Brain Barrier Plasticity. Cell, 2012, 151, 1332-1344.	13.5	301
50	Frizzled 2 and frizzled 7 function redundantly in convergent extension and closure of the ventricular septum and palate: evidence for a network of interacting genes. Development (Cambridge), 2012, 139, 4383-4394.	1.2	126
51	Signaling by Sensory Receptors. Cold Spring Harbor Perspectives in Biology, 2012, 4, a005991-a005991.	2.3	63
52	Morphologic diversity of cutaneous sensory afferents revealed by genetically directed sparse labeling. ELife, 2012, 1, e00181.	2.8	56
53	An MRI-based atlas and database of the developing mouse brain. NeuroImage, 2011, 54, 80-89.	2.1	147
54	Class 5 Transmembrane Semaphorins Control Selective Mammalian Retinal Lamination and Function. Neuron, 2011, 71, 460-473.	3.8	137

4

#	Article	IF	CITATIONS
55	Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: Analysis of wild type and mutant cells using genetically-directed sparse labeling. Vision Research, 2011, 51, 269-279.	0.7	91
56	Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain. Gene Expression Patterns, 2011, 11, 151-155.	0.3	58
57	Genetic mosaic analysis reveals a major role for frizzled 4 and frizzled 8 in controlling ureteric growth in the developing kidney. Development (Cambridge), 2011, 138, 1161-1172.	1.2	47
58	Preclinical assessment of CNS drug action using eye movements in mice. Journal of Clinical Investigation, 2011, 121, 3528-3541.	3.9	7
59	When whorls collide: the development of hair patterns in frizzled 6 mutant mice. Development (Cambridge), 2010, 137, 4091-4099.	1.2	49
60	Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes. Development (Cambridge), 2010, 137, 3707-3717.	1.2	126
61	China's Plan Flawed But Courageous. Science, 2010, 330, 1625-1625.	6.0	0
62	The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends in Molecular Medicine, 2010, 16, 417-425.	3.5	146
63	Norrin, Frizzled-4, and Lrp5 Signaling in Endothelial Cells Controls a Genetic Program for Retinal Vascularization. Cell, 2010, 141, 191.	13.5	1
64	New Mouse Lines for the Analysis of Neuronal Morphology Using CreER(T)/loxP-Directed Sparse Labeling. PLoS ONE, 2009, 4, e7859.	1.1	83
65	The Evolution of Primate Color Vision. Scientific American, 2009, 300, 56-63.	1.0	85
66	Norrin, Frizzled-4, and Lrp5 Signaling in Endothelial Cells Controls a Genetic Program for Retinal Vascularization. Cell, 2009, 139, 285-298.	13.5	377
67	Distinct Roles of Transcription Factors Brn3a and Brn3b in Controlling the Development, Morphology, and Function of Retinal Ganglion Cells. Neuron, 2009, 61, 852-864.	3.8	233
68	An essential role for frizzled 5 in mammalian ocular development. Development (Cambridge), 2008, 135, 3567-3576.	1.2	78
69	The Genomic Response of the Retinal Pigment Epithelium to Light Damage and Retinal Detachment. Journal of Neuroscience, 2008, 28, 9880-9889.	1.7	43
70	An Essential Role for Frizzled5 in Neuronal Survival in the Parafascicular Nucleus of the Thalamus. Journal of Neuroscience, 2008, 28, 5641-5653.	1.7	66
71	Genetically-Directed, Cell Type-Specific Sparse Labeling for the Analysis of Neuronal Morphology. PLoS ONE, 2008, 3, e4099.	1.1	68
72	The Optokinetic Reflex as a Tool for Quantitative Analyses of Nervous System Function in Mice: Application to Genetic and Drug-Induced Variation. PLoS ONE, 2008, 3, e2055.	1.1	114

#	Article	IF	CITATIONS
73	Mutational Analysis of Norrin-Frizzled4 Recognition. Journal of Biological Chemistry, 2007, 282, 4057-4068.	1.6	94
74	Tissue/planar cell polarity in vertebrates: new insights and new questions. Development (Cambridge), 2007, 134, 647-658.	1.2	377
75	Estrogen-Related Receptor β/NR3B2 Controls Epithelial Cell Fate and Endolymph Production by the Stria Vascularis. Developmental Cell, 2007, 13, 325-337.	3.1	125
76	Genetic Ablation of Cone Photoreceptors Eliminates Retinal Folds in theRetinal Degeneration 7 (rd7) Mouse. , 2007, 48, 2799.		30
77	Emergence of Novel Color Vision in Mice Engineered to Express a Human Cone Photopigment. Science, 2007, 315, 1723-1725.	6.0	209
78	An Evolutionary Perspective on the Photoreceptor Damage Response. American Journal of Ophthalmology, 2006, 141, 558-562.e2.	1.7	14
79	Macular degeneration: recent advances and therapeutic opportunities. Nature Reviews Neuroscience, 2006, 7, 860-872.	4.9	199
80	Ca2+-activated Clâ^' Current from Human Bestrophin-4 in Excised Membrane Patches. Journal of General Physiology, 2006, 127, 749-754.	0.9	49
81	Effects of L1 retrotransposon insertion on transcript processing, localization and accumulation: lessons from the retinal degeneration 7 mouse and implications for the genomic ecology of L1 elements. Human Molecular Genetics, 2006, 15, 2146-2156.	1.4	74
82	Axonal Growth and Guidance Defects in Frizzled3 Knock-Out Mice: A Comparison of Diffusion Tensor Magnetic Resonance Imaging, Neurofilament Staining, and Genetically Directed Cell Labeling. Journal of Neuroscience, 2006, 26, 355-364.	1.7	115
83	The Role of Frizzled3 and Frizzled6 in Neural Tube Closure and in the Planar Polarity of Inner-Ear Sensory Hair Cells. Journal of Neuroscience, 2006, 26, 2147-2156.	1.7	468
84	Order from disorder: Self-organization in mammalian hair patterning. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19800-19805.	3.3	85
85	The Rod Photoreceptor-Specific Nuclear Receptor Nr2e3 Represses Transcription of Multiple Cone-Specific Genes. Journal of Neuroscience, 2005, 25, 118-129.	1.7	239
86	Written in Our Genes?. Science, 2005, 308, 1742a-1742a.	6.0	6
87	The Genomic Response to Retinal Disease and Injury: Evidence for Endothelin Signaling from Photoreceptors to Glia. Journal of Neuroscience, 2005, 25, 4540-4549.	1.7	187
88	An Outer Segment Localization Signal at the C Terminus of the Photoreceptor-Specific Retinol Dehydrogenase. Journal of Neuroscience, 2004, 24, 2623-2632.	1.7	53
89	From The Cover: Frizzled6 controls hair patterning in mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9277-9281.	3.3	269
90	Proteolytic Shedding of the Extracellular Domain of Photoreceptor Cadherin. Journal of Biological Chemistry, 2004, 279, 42202-42210.	1.6	49

#	Article	IF	CITATIONS
91	Proximal and Distal Sequences Control UV Cone Pigment Gene Expression in Transgenic Zebrafish. Journal of Biological Chemistry, 2004, 279, 19286-19293.	1.6	28
92	Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. Journal of Comparative Neurology, 2004, 480, 331-351.	0.9	223
93	Vascular Development in the Retina and Inner Ear. Cell, 2004, 116, 883-895.	13.5	783
94	Anterior-Posterior Guidance of Commissural Axons by Wnt-Frizzled Signaling. Science, 2003, 302, 1984-1988.	6.0	507
95	Structure-Function Analysis of the Bestrophin Family of Anion Channels. Journal of Biological Chemistry, 2003, 278, 41114-41125.	1.6	198
96	Genetically engineered mice with an additional class of cone photoreceptors: Implications for the evolution of color vision. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11706-11711.	3.3	98
97	A strabismus susceptibility locus on chromosome 7p. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12283-12288.	3.3	50
98	A Noninvasive Genetic/Pharmacologic Strategy for Visualizing Cell Morphology and Clonal Relationships in the Mouse. Journal of Neuroscience, 2003, 23, 2314-2322.	1.7	238
99	A New Cl Channel Family Defined by Vitelliform Macular Dystrophy. , 2003, , 160-163.		Ο
100	Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1008-1011.	3.3	152
101	The vitelliform macular dystrophy protein defines a new family of chloride channels. Proceedings of the United States of America, 2002, 99, 4008-4013.	3.3	447
102	<i>Frizzled-3</i> Is Required for the Development of Major Fiber Tracts in the Rostral CNS. Journal of Neuroscience, 2002, 22, 8563-8573.	1.7	254
103	A Photoreceptor-Specific Cadherin Is Essential for the Structural Integrity of the Outer Segment and for Photoreceptor Survival. Neuron, 2001, 32, 775-786.	3.8	120
104	Progressive Cerebellar, Auditory, and Esophageal Dysfunction Caused by Targeted Disruption of the <i>frizzled-</i> 4 Gene. Journal of Neuroscience, 2001, 21, 4761-4771.	1.7	135
105	Expression and regulation of chicken fibroblast growth factor homologous factor (FHF)-4 during craniofacial morphogenesis. Developmental Dynamics, 2001, 220, 238-245.	0.8	16
106	Four novel mutations in the RPE65 gene in patients with Leber congenital amaurosis. Human Mutation, 2001, 18, 164-164.	1.1	52
107	Mechanistic studies of ABCR, the ABC transporter in photoreceptor outer segments responsible for autosomal recessive Stargardt disease. Journal of Bioenergetics and Biomembranes, 2001, 33, 523-530.	1.0	59
108	The Challenge of Macular Degeneration. Scientific American, 2001, 285, 68-75.	1.0	22

#	Article	IF	CITATIONS
109	Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature, 2001, 412, 86-90.	13.7	412
110	Normal Light Response, Photoreceptor Integrity, and Rhodopsin Dephosphorylation in Mice Lacking Both Protein Phosphatases with EF Hands (PPEF-1 and PPEF-2). Molecular and Cellular Biology, 2001, 21, 8605-8614.	1.1	31
111	ABCR, the ATP-binding Cassette Transporter Responsible for Stargardt Macular Dystrophy, Is an Efficient Target of All-trans-retinal-mediated Photooxidative Damage in Vitro. Journal of Biological Chemistry, 2001, 276, 11766-11774.	1.6	86
112	Cellular and Subcellular Localization, N-terminal Acylation, and Calcium Binding of Caenorhabditis elegans Protein Phosphatase with EF-hands. Journal of Biological Chemistry, 2001, 276, 25127-25135.	1.6	23
113	Biochemical defects in ABCR protein variants associated with human retinopathies. Nature Genetics, 2000, 26, 242-246.	9.4	177
114	Identification and Characterization of All-trans-retinol Dehydrogenase from Photoreceptor Outer Segments, the Visual Cycle Enzyme That Reduces All-trans-retinal to All-trans-retinol. Journal of Biological Chemistry, 2000, 275, 11034-11043.	1.6	182
115	[42] Spectral sensitivities of human cone visual pigments determined in vivo and in vitro. Methods in Enzymology, 2000, 316, 626-650.	0.4	39
116	[58] ABCR: Rod photoreceptor-specific ABC transporter responsible for Stargardt disease. Methods in Enzymology, 2000, 315, 879-897.	0.4	24
117	Isoform Diversity among Fibroblast Growth Factor Homologous Factors Is Generated by Alternative Promoter Usage and Differential Splicing. Journal of Biological Chemistry, 2000, 275, 2589-2597.	1.6	89
118	Expression and regulation of chicken fibroblast growth factor homologous factor (FHF)-4 at the base of the developing limbs. Mechanisms of Development, 2000, 95, 101-112.	1.7	14
119	Retinal Stimulates ATP Hydrolysis by Purified and Reconstituted ABCR, the Photoreceptor-specific ATP-binding Cassette Transporter Responsible for Stargardt Disease. Journal of Biological Chemistry, 1999, 274, 8269-8281.	1.6	322
120	Biochemical characterization of Wnt-Frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3546-3551.	3.3	310
121	Molecular Genetics of Human Retinal Disease. Annual Review of Genetics, 1999, 33, 89-131.	3.2	223
122	Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5251-5256.	3.3	100
123	A new secreted protein that binds to Wnt proteins and inhibits their activites. Nature, 1999, 398, 431-436.	13.7	664
124	The Evolution and Physiology of Human Color Vision. Neuron, 1999, 24, 299-312.	3.8	316
125	L, M and L–M hybrid cone photopigments in man: deriving λmax from flicker photometric spectral sensitivities. Vision Research, 1999, 39, 3513-3525.	0.7	25
126	A Novel Signaling Pathway from Rod Photoreceptors to Ganglion Cells in Mammalian Retina. Neuron, 1998, 21, 481-493.	3.8	258

#	Article	IF	CITATIONS
127	Red, Green, and Red-Green Hybrid Pigments in the Human Retina: Correlations between Deduced Protein Sequences and Psychophysically Measured Spectral Sensitivities. Journal of Neuroscience, 1998, 18, 10053-10069.	1.7	145
128	Identification and characterization of a conserved family of protein serine/threonine phosphatases homologous to Drosophila retinal degeneration C (rdgC). Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11639-11644.	3.3	50
129	Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9893-9898.	3.3	140
130	Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9445-9450.	3.3	302
131	A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 2859-2863.	3.3	525
132	A Member of the Frizzled Protein Family Mediating Axis Induction by Wnt-5A. Science, 1997, 275, 1652-1654.	6.0	434
133	Mechanisms of spectral tuning in the mouse green cone pigment. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8860-8865.	3.3	191
134	A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Starqardt macular dystrophy. Nature Genetics, 1997, 15, 236-246.	9.4	1,277
135	Stargardt's ABCR is localized to the disc membrane of retinal rod outer segments. Nature Genetics, 1997, 17, 15-16.	9.4	229
136	Targeted deletion of the mouse POU domain gene Brn-3a causes selective loss of neurons in the brainstem and trigeminal ganglion, uncoordinated limb movement, and impaired suckling Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11950-11955.	3.3	220
137	Retina-derived POU-domain factor-1: a complex POU-domain gene implicated in the development of retinal ganglion and amacrine cells. Journal of Neuroscience, 1996, 16, 2261-2274.	1.7	71
138	A Large Family of Putative Transmembrane Receptors Homologous to the Product of the Drosophila Tissue Polarity Gene frizzled. Journal of Biological Chemistry, 1996, 271, 4468-4476.	1.6	317
139	POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3920-3925.	3.3	318
140	Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9850-9857.	3.3	351
141	Molecular biology of retinal ganglion cells Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 596-601.	3.3	48
142	A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature, 1996, 382, 225-230.	13.7	1,348
143	Similarities and differences among inner retinal neurons revealed by the expression of reporter transgenes controlled by Brn-3a, Brn-3b, and Brn-3c promotor sequences. Visual Neuroscience, 1996, 13, 955-962.	0.5	14
144	cDNA cloning of a human homologue of the Caenorhabditis elegans cell fate-determining gene mab-21: expression, chromosomal localization and analysis of a highly polymorphic (CAG)n trinucleotide repeat. Human Molecular Genetics, 1996, 5, 607-616.	1.4	43

#	Article	IF	CITATIONS
145	The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. Journal of Neuroscience, 1995, 15, 4762-4785.	1.7	383
146	Rhodopsin mutation proline347-to-alanine in a family with autosomal dominant retinitis pigmentosa indicates an important role for proline at position 347. Human Molecular Genetics, 1995, 4, 775-776.	1.4	23
147	Rhodopsin Gene Mutations Causing Retinitis Pigmentosa. , 1995, , 53-62.		0
148	A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. Journal of Neuroscience, 1994, 14, 5818-5833.	1.7	326
149	Blue cones and cone bipolar cells share transcriptional specificity as determined by expression of human blue visual pigment-derived transgenes. Journal of Neuroscience, 1994, 14, 3426-3436.	1.7	43
150	Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 974-978.	3.3	577
151	A sequence upstream of the mouse blue visual pigment gene directs blue cone-specific transgene expression in mouse retinas. Visual Neuroscience, 1994, 11, 773-780.	0.5	56
152	In the eye of the beholder: Visual pigments and inherited variation in human vision. Cell, 1994, 78, 357-360.	13.5	54
153	Murine and Bovine Blue Cone Pigment Genes: Cloning and Characterization of Two New Members of the S Family of Visual Pigments. Genomics, 1994, 21, 440-443.	1.3	61
154	ROLE OF HYDROXYLâ€BEARING AMINO ACIDS IN DIFFERENTIALLY TUNING THE ABSORPTION SPECTRA OF THE HUMAN RED AND GREEN CONE PIGMENTS. Photochemistry and Photobiology, 1993, 58, 706-710.	1.3	141
155	Cloning and expression of goldfish opsin sequences. Biochemistry, 1993, 32, 208-214.	1.2	160
156	Rhodopsin activation: Effects of the metarhodopsin I-metarhodopsin II equilibrium of neutralization or introduction of charged amino acids within putative transmembrane segments. Biochemistry, 1993, 32, 14176-14182.	1.2	66
157	Brn-3b: a POU domain gene expressed in a subset of retinal ganglion cells. Neuron, 1993, 11, 689-701.	3.8	208
158	Bovine pancreatic trypsin inhibitor-trypsin complex as a detection system for recombinant proteins Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 337-341.	3.3	11
159	Absorption spectra of the hybrid pigments responsible for anomalous color vision. Science, 1992, 258, 464-466.	6.0	194
160	Molecular Genetics of Human Visual Pigments. Annual Review of Genetics, 1992, 26, 403-424.	3.2	174
161	Abnormal Rod Dark Adaptation in Autosomal Dominant Retinitis Pigmentosa With Proline-23-Histidine Rhodopsin Mutation. American Journal of Ophthalmology, 1992, 113, 165-174.	1.7	69
162	A locus control region adjacent to the human red and green visual pigment genes. Neuron, 1992, 9, 429-440.	3.8	390

#	Article	IF	CITATIONS
163	Histidine residues regulate the transition of photoexcited rhodopsin to its active conformation, metarhodopsin II. Neuron, 1992, 8, 465-472.	3.8	173
164	Rhodopsin: structure, function, and genetics. Biochemistry, 1992, 31, 4923-4931.	1.2	220
165	A visual pigment from chicken that resembles rhodopsin: amino acid sequence, gene structure, and functional expression. Biochemistry, 1992, 31, 3309-3315.	1.2	51
166	Human rod photoreceptor cGMP-gated channel: amino acid sequence, gene structure, and functional expression. Journal of Neuroscience, 1992, 12, 3248-3256.	1.7	204
167	Absorption spectra of human cone pigments. Nature, 1992, 356, 433-435.	13.7	366
168	PHOTOBLEACHING DIFFERENCE ABSORPTION SPECTRA OF HUMAN CONE PIGMENTS: QUANTITATIVE ANALYSIS AND COMPARISON TO OTHER METHODS. Photochemistry and Photobiology, 1992, 56, 869-881.	1.3	15
169	Unusual topography of bovine rhodopsin promoter-lacZ fusion gene expression in transgenic mouse retinas. Neuron, 1991, 6, 187-199.	3.8	191
170	Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8840-8844.	3.3	520
171	Rhodopsin mutations in autosomal dominant retinitis pigmentosa Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 6481-6485.	3.3	422
172	Retinal Function and Rhodopsin Levels in Autosomal Dominant Retinitis Pigmentosa With Rhodopsin Mutations. American Journal of Ophthalmology, 1991, 112, 256-271.	1.7	213
173	Determinants of visual pigment absorbance: role of charged amino acids in the putative transmembrane segments. Biochemistry, 1990, 29, 937-942.	1.2	244
174	Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin. Biochemistry, 1990, 29, 9746-9752.	1.2	356
175	The Genes for Color Vision. Scientific American, 1989, 260, 42-49.	1.0	68
176	Production of bovine rhodopsin by mammalian cell lines expressing cloned cDNA: Spectrophotometry and subcellular localization. Vision Research, 1989, 29, 907-914.	0.7	147
177	Molecular genetics of human blue cone monochromacy. Science, 1989, 245, 831-838.	6.0	300
178	Tandem array of human visual pigment genes at Xq28. Science, 1988, 240, 1669-1672.	6.0	204
179	Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science, 1986, 232, 193-202.	6.0	1,633
180	Molecular genetics of inherited variation in human color vision. Science, 1986, 232, 203-210.	6.0	739

#	Article	IF	CITATIONS
181	Isolation and nucleotide sequence of the gene encoding human rhodopsin Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 4851-4855.	3.3	437
182	Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell, 1983, 34, 807-814.	13.5	705
183	Cloning and nucleotide sequence of DNA coding for bovine preproparathyroid hormone Proceedings of the National Academy of Sciences of the United States of America, 1979, 76, 4981-4985.	3.3	94
184	Molecular structure of a double helical DNA fragment intercalator complex between deoxy CpG and a terpyridine platinum compound. Nature, 1978, 276, 471-474.	13.7	211