
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1488164/publications.pdf Version: 2024-02-01

<u> 7нігіі Мі</u>

#	Article	IF	CITATIONS
1	China CO2 emission accounts 1997–2015. Scientific Data, 2018, 5, 170201.	2.4	824
2	Chinese CO2 emission flows have reversed since the global financial crisis. Nature Communications, 2017, 8, 1712.	5.8	678
3	The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet, The, 2021, 398, 1619-1662.	6.3	669
4	Consumption-based emission accounting for Chinese cities. Applied Energy, 2016, 184, 1073-1081.	5.1	519
5	Potential impacts of industrial structure on energy consumption and CO2 emission: a case study of Beijing. Journal of Cleaner Production, 2015, 103, 455-462.	4.6	353
6	Methodology and applications of city level CO2 emission accounts in China. Journal of Cleaner Production, 2017, 161, 1215-1225.	4.6	351
7	Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030. Journal of Cleaner Production, 2017, 142, 2227-2236.	4.6	346
8	Environmental benefits of bike sharing: A big data-based analysis. Applied Energy, 2018, 220, 296-301.	5.1	341
9	Structural decline in China's CO2 emissions through transitions in industry and energy systems. Nature Geoscience, 2018, 11, 551-555.	5.4	340
10	The rise of South–South trade and its effect on global CO2 emissions. Nature Communications, 2018, 9, 1871.	5.8	328
11	City-level climate change mitigation in China. Science Advances, 2018, 4, eaaq0390.	4.7	287
12	Regional development and carbon emissions in China. Energy Economics, 2019, 81, 25-36.	5.6	284
13	Substantial emission reductions from Chinese power plants after the introduction of ultra-low emissions standards. Nature Energy, 2019, 4, 929-938.	19.8	273
14	Economic development and converging household carbon footprints in China. Nature Sustainability, 2020, 3, 529-537.	11.5	224
15	Pattern changes in determinants of Chinese emissions. Environmental Research Letters, 2017, 12, 074003.	2.2	217
16	Carbon emissions of cities from a consumption-based perspective. Applied Energy, 2019, 235, 509-518.	5.1	198
17	Cities: The core of climate change mitigation. Journal of Cleaner Production, 2019, 207, 582-589.	4.6	193
18	The sharing economy promotes sustainable societies. Nature Communications, 2019, 10, 1214.	5.8	158

#	Article	IF	CITATIONS
19	The evaluation of transportation energy efficiency: An application of three-stage virtual frontier DEA. Transportation Research, Part D: Transport and Environment, 2014, 29, 1-11.	3.2	152
20	The Slowdown in China's Carbon Emissions Growth in the New Phase of Economic Development. One Earth, 2019, 1, 240-253.	3.6	138
21	An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries. Applied Energy, 2015, 141, 209-217.	5.1	130
22	Trans-provincial health impacts of atmospheric mercury emissions in China. Nature Communications, 2019, 10, 1484.	5.8	126
23	China's "Exported Carbon―Peak: Patterns, Drivers, and Implications. Geophysical Research Letters, 2018, 45, 4309-4318.	1.5	124
24	Electric fence planning for dockless bike-sharing services. Journal of Cleaner Production, 2019, 206, 383-393.	4.6	120
25	Inequality of household consumption and air pollution-related deaths in China. Nature Communications, 2019, 10, 4337.	5.8	114
26	Evaluating energy efficiency for airlines: An application of VFB-DEA. Journal of Air Transport Management, 2015, 44-45, 34-41.	2.4	110
27	A multi-regional input-output table mapping China's economic outputs and interdependencies in 2012. Scientific Data, 2018, 5, 180155.	2.4	105
28	Evaluating airline efficiency: An application of Virtual Frontier Network SBM. Transportation Research, Part E: Logistics and Transportation Review, 2015, 81, 1-17.	3.7	103
29	Climate policy modeling: An online SCI-E and SSCI based literature review. Omega, 2015, 57, 70-84.	3.6	103
30	Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012. Energy, 2016, 96, 8-22.	4.5	102
31	China's Energy Consumption in the New Normal. Earth's Future, 2018, 6, 1007-1016.	2.4	101
32	The Slowdown in Global Air-Pollutant Emission Growth and Driving Factors. One Earth, 2019, 1, 138-148.	3.6	91
33	The consumption-based black carbon emissions of China's megacities. Journal of Cleaner Production, 2017, 161, 1275-1282.	4.6	80
34	Who is energy poor? Evidence from the least developed regions in China. Energy Policy, 2020, 137, 111122.	4.2	79
35	Assessment on the research trend of low-carbon energy technology investment: A bibliometric analysis. Applied Energy, 2016, 184, 960-970.	5.1	77
36	A sustainable biogas model in China: The case study of Beijing Deqingyuan biogas project. Renewable and Sustainable Energy Reviews, 2017, 78, 773-779.	8.2	72

#	Article	IF	CITATIONS
37	Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach. Applied Energy, 2016, 183, 984-994.	5.1	71
38	Assessing the policy impacts on non-ferrous metals industry's CO2 reduction: Evidence from China. Journal of Cleaner Production, 2018, 192, 252-261.	4.6	71
39	Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure. Energy, 2016, 113, 1231-1240.	4.5	69
40	Peak cementâ€felated CO ₂ emissions and the changes in drivers in China. Journal of Industrial Ecology, 2019, 23, 959-971.	2.8	64
41	Forecasting China's regional energy demand by 2030: A Bayesian approach. Resources, Conservation and Recycling, 2017, 127, 85-95.	5.3	63
42	Population ageing and deaths attributable to ambient PM2·5 pollution: a global analysis of economic cost. Lancet Planetary Health, The, 2021, 5, e356-e367.	5.1	63
43	Carbon neutral growth from 2020 strategy and airline environmental inefficiency: A Network Range Adjusted Environmental Data Envelopment Analysis. Applied Energy, 2017, 199, 13-24.	5.1	62
44	Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data. Applied Energy, 2018, 231, 1070-1078.	5.1	62
45	An integrated assessment of INDCs under Shared Socioeconomic Pathways: an implementation of C3IAM. Natural Hazards, 2018, 92, 585-618.	1.6	62
46	Carbon emissions performance in logistics at the city level. Journal of Cleaner Production, 2019, 231, 1258-1266.	4.6	61
47	The change trend and influencing factors of civil aviation safety efficiency: The case of Chinese airline companies. Safety Science, 2015, 75, 56-63.	2.6	60
48	Urban energy consumption and CO2 emissions in Beijing: current and future. Energy Efficiency, 2015, 8, 527-543.	1.3	60
49	Rapid growth of petroleum coke consumption and its related emissions in China. Applied Energy, 2018, 226, 494-502.	5.1	60
50	Can virtual water trade save water resources?. Water Research, 2019, 163, 114848.	5.3	59
51	Mapping Carbon and Water Networks in the North China Urban Agglomeration. One Earth, 2019, 1, 126-137.	3.6	58
52	Effect of strengthened standards on Chinese ironmaking and steelmaking emissions. Nature Sustainability, 2021, 4, 811-820.	11.5	53
53	Demand-driven air pollutant emissions for a fast-developing region in China. Applied Energy, 2017, 204, 131-142.	5.1	52
54	Provinces with transitions in industrial structure and energy mix performed best in climate change mitigation in China. Communications Earth & Environment, 2021, 2, .	2.6	52

#	Article	IF	CITATIONS
55	The comprehensive environmental efficiency of socioeconomic sectors in China: An analysis based on a non-separable bad output SBM. Journal of Cleaner Production, 2018, 176, 1091-1110.	4.6	49
56	Impacts of climate change on hydropower generation in China. Mathematics and Computers in Simulation, 2020, 167, 4-18.	2.4	49
57	Regional efforts to mitigate climate change in China: a multi-criteria assessment approach. Mitigation and Adaptation Strategies for Global Change, 2017, 22, 45-66.	1.0	48
58	Energy consumption and CO ₂ emissions in Tibet and its cities in 2014. Earth's Future, 2017, 5, 854-864.	2.4	48
59	How modifications of China's energy data affect carbon mitigation targets. Energy Policy, 2018, 116, 337-343.	4.2	48
60	Air pollution emissions from Chinese power plants based on the continuous emission monitoring systems network. Scientific Data, 2020, 7, 325.	2.4	47
61	Linking cityâ€level input–output table to urban energy footprint: Construction framework and application. Journal of Industrial Ecology, 2019, 23, 781-795.	2.8	46
62	Rural household energy consumption of farmers and herders in the Qinghai-Tibet Plateau. Energy, 2020, 192, 116649.	4.5	44
63	Temporal change in India's imbalance of carbon emissions embodied in international trade. Applied Energy, 2018, 231, 914-925.	5.1	43
64	Energy efficiency measures for airlines: An application of virtual frontier dynamic range adjusted measure. Journal of Renewable and Sustainable Energy, 2016, 8, .	0.8	42
65	The role of intermediate trade in the change of carbon flows within China. Energy Economics, 2018, 76, 303-312.	5.6	41
66	Quantitative models in emission trading system research: A literature review. Renewable and Sustainable Energy Reviews, 2020, 132, 110052.	8.2	41
67	Risk management of extreme events under climate change. Journal of Cleaner Production, 2017, 166, 1169-1174.	4.6	40
68	Social cost of carbon under shared socioeconomic pathways. Global Environmental Change, 2018, 53, 225-232.	3.6	39
69	Will airline efficiency be affected by "Carbon Neutral Growth from 2020―strategy? Evidences from 29 international airlines. Journal of Cleaner Production, 2017, 164, 1289-1300.	4.6	36
70	How does hydrogen-based renewable energy change with economic development? Empirical evidence from 32 countries. International Journal of Hydrogen Energy, 2018, 43, 11629-11638.	3.8	36
71	Virtual water flow pattern of grain trade and its benefits in China. Journal of Cleaner Production, 2019, 223, 445-455.	4.6	35
72	Origin and Radiative Forcing of Black Carbon Aerosol: Production and Consumption Perspectives. Environmental Science & Technology, 2018, 52, 6380-6389.	4.6	34

Zніғи Мі

#	Article	lF	CITATIONS
73	Dilution effect of the building area on energy intensity in urban residential buildings. Nature Communications, 2019, 10, 4944.	5.8	34
74	Carbon transfer within China: Insights from production fragmentation. Energy Economics, 2020, 86, 104647.	5.6	34
75	Decoupling without outsourcing? How China's consumption-based CO2 emissions have plateaued. IScience, 2021, 24, 103130.	1.9	34
76	Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEAâ€Based Materials Balance Approach. Journal of Industrial Ecology, 2019, 23, 389-401.	2.8	32
77	Environmental taxation and regional inequality in China. Science Bulletin, 2019, 64, 1691-1699.	4.3	31
78	Bigger cities better climate? Results from an analysis of urban areas in China. Energy Economics, 2022, 107, 105872.	5.6	31
79	CNG2020 strategy and airline efficiency: A Network Epsilon-Based Measure with managerial disposability. International Journal of Sustainable Transportation, 2018, 12, 313-323.	2.1	30
80	Assessment of equity principles for international climate policy based on an integrated assessment model. Natural Hazards, 2019, 95, 309-323.	1.6	30
81	Role of export industries on ozone pollution and its precursors in China. Nature Communications, 2020, 11, 5492.	5.8	30
82	China's carbon flow: 2008–2012. Energy Policy, 2015, 80, 45-53.	4.2	29
83	Environmental efficiency measures for ports: an application of RAM-Tobit-RAM with undesirable outputs. Maritime Policy and Management, 2017, 44, 551-564.	1.9	28
84	Climate impacts: temperature and electricity consumption. Natural Hazards, 2019, 99, 1259-1275.	1.6	28
85	Initial Declines in China's Provincial Energy Consumption and Their Drivers. Joule, 2019, 3, 1163-1168.	11.7	26
86	Risk assessment of oil price from static and dynamic modelling approaches. Applied Economics, 2017, 49, 929-939.	1.2	25
87	Characterizing the stocks, flows, and carbon impact of dockless sharing bikes in China. Resources, Conservation and Recycling, 2020, 162, 105038.	5.3	25
88	An environmental benefit analysis of bike sharing in New York City. Cities, 2022, 121, 103475.	2.7	25
89	Measuring the energy efficiency for airlines under the pressure of being included into the EU ETS. Journal of Advanced Transportation, 2016, 50, 1630-1649.	0.9	24
90	The health benefits and economic effects of cooperative PM2.5 control: A cost-effectiveness game model. Journal of Cleaner Production, 2019, 228, 1572-1585.	4.6	24

#	Article	IF	CITATIONS
91	Saving less in China facilitates global CO2 mitigation. Nature Communications, 2020, 11, 1358.	5.8	24
92	Network resilience of phosphorus cycling in China has shifted by natural flows, fertilizer use and dietary transitions between 1600 and 2012. Nature Food, 2020, 1, 365-375.	6.2	22
93	The Role of Bike Sharing in Promoting Transport Resilience. Networks and Spatial Economics, 2022, 22, 567-585.	0.7	22
94	Will airlines' pollution abatement costs be affected by CNG2020 strategy? An analysis through a Network Environmental Production Function. Transportation Research, Part D: Transport and Environment, 2017, 57, 141-154.	3.2	21
95	A cost–benefit analysis of the environmental taxation policy in China: A frontier analysisâ€based environmentally extended input–output optimization method. Journal of Industrial Ecology, 2020, 24, 564-576.	2.8	21
96	Carbon emissions in countries that failed to ratify the intended nationally determined contributions: A case study of Kyrgyzstan. Journal of Environmental Management, 2020, 255, 109892.	3.8	19
97	Spatially Explicit Global Hotspots Driving China's Mercury Related Health Impacts. Environmental Science & Technology, 2020, 54, 14547-14557.	4.6	19
98	Evaluating airline efficiency under "Carbon Neutral Growth from 2020―strategy through a Network Interval Slack-Based Measure. Energy, 2020, 193, 116734.	4.5	18
99	Can the aviation industry achieve carbon emission reduction and revenue growth simultaneously under the CNG2020 strategy? An empirical study with 25 benchmarking airlines. Energy, 2022, 245, 123272.	4.5	18
100	Airline energy efficiency measures using the Virtual Frontier Network RAM with weak disposability. Transportation Planning and Technology, 2017, 40, 479-504.	0.9	17
101	Geoengineering and the blockchain: Coordinating Carbon Dioxide Removal and Solar Radiation Management to tackle future emissions. Frontiers of Engineering Management, 2019, 6, 38-51.	3.3	17
102	Life-cycle water uses for energy consumption of Chinese households from 2002 to 2015. Journal of Environmental Management, 2019, 231, 989-995.	3.8	17
103	Accounting for the carbon emissions from domestic air routes in China. Heliyon, 2022, 8, e08716.	1.4	17
104	Pollution abatement costs change decomposition for airlines: An analysis from a dynamic perspective. Transportation Research, Part A: Policy and Practice, 2018, 111, 96-107.	2.0	16
105	Airline environmental efficiency measures considering materials balance principles: an application of a network range-adjusted measure with weak-G disposability. Journal of Environmental Planning and Management, 2018, 61, 2298-2318.	2.4	15
106	Optimization of virtual water flow via grain trade within China. Ecological Indicators, 2019, 97, 25-34.	2.6	15
107	A Review of Data Envelopment Analysis in Airline Efficiency: State of the Art and Prospects. Journal of Advanced Transportation, 2021, 2021, 1-13.	0.9	15
108	Investigating the impacts of the EU ETS emission rights on airline environmental efficiency via a Network Environmental SBM model. Journal of Environmental Planning and Management, 2019, 62, 1465-1488.	2.4	14

Zніғи Мі

#	Article	IF	CITATIONS
109	Which airline should undertake a large emission reduction allocation proportion under the "carbon neutral growth from 2020" strategy? An empirical study with 27 global airlines. Journal of Cleaner Production, 2021, 279, 123745.	4.6	14
110	Analyzing the role of competition and cooperation in airline environmental efficiency through two dynamic environmental cross-efficiency models. International Journal of Sustainable Transportation, 2021, 15, 850-864.	2.1	13
111	Solely economic mitigation strategy suggests upward revision of nationally determined contributions. One Earth, 2021, 4, 1150-1162.	3.6	13
112	Estimating the 'value at risk' of EUA futures prices based on the extreme value theory. International Journal of Global Energy Issues, 2011, 35, 145.	0.2	12
113	China's socioeconomic risk from extreme events in a changing climate: a hierarchical Bayesian model. Climatic Change, 2016, 139, 169-181.	1.7	12
114	Investigating the role of cooperation in the GHG abatement costs of airlines under CNG2020 strategy via a DEA cross PAC model. Energy, 2018, 161, 725-736.	4.5	12
115	Frequent interactions of Tibet's CO ₂ emissions with those of other regions in China. Earth's Future, 2019, 7, 491-502.	2.4	12
116	Investment in carbon dioxide capture and storage combined with enhanced water recovery. International Journal of Greenhouse Gas Control, 2020, 94, 102848.	2.3	12
117	Critical transmission sectors in embodied atmospheric mercury emission network in China. Journal of Industrial Ecology, 2021, 25, 1644-1656.	2.8	12
118	Reforming the Operation Mechanism of Chinese Electricity System: Benefits, Challenges and Possible Solutions. Energy Journal, 2020, 41, 219-246.	0.9	12
119	The online pricing strategy of low-cost carriers when carbon tax and competition are considered. Transportation Research, Part A: Policy and Practice, 2019, 121, 420-432.	2.0	10
120	Airline energy efficiency measures using a network range-adjusted measure with unified natural and managerial disposability. Energy Efficiency, 2020, 13, 1195-1211.	1.3	10
121	Carbon implications of China's changing economic structure at the city level. Structural Change and Economic Dynamics, 2018, 46, 163-171.	2.1	9
122	Exploring the differences in the airport competitiveness formation mechanism: evidence from 45 Chinese airports during 2010–2014. Transportmetrica B, 2017, 5, 325-341.	1.4	8
123	The impact of climate risk valuation on the regional mitigation strategies. Journal of Cleaner Production, 2021, 313, 127786.	4.6	7
124	Flexible options to provide energy for capturing carbon dioxide in coal-fired power plants under the Clean Development Mechanism. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 1483-1505.	1.0	5
125	Destruction and Deflection: Evidence from American Antidumping Actions against China. Structural Change and Economic Dynamics, 2021, 57, 203-213.	2.1	4
126	Using a linear regression approach to sequential interindustry model for time-lagged economic impact analysis. Structural Change and Economic Dynamics, 2022, 62, 399-406.	2.1	4

Zніғи Мі

#	Article	IF	CITATIONS
127	Airline environmental efficiency comparison through two non-separable inputs disposability Range Adjusted Measure models. Journal of Cleaner Production, 2021, 320, 128844.	4.6	3
128	Airline efficiency measures considering undesirable outputs: an application of a network slack-based measures with double frontiers. Journal of Environmental Planning and Management, 2023, 66, 191-220.	2.4	3
129	Official website or online travel agencies? The online ticket booking strategies of low-cost carriers. Transportmetrica B, 2019, 7, 1743-1757.	1.4	2
130	Investigating the Profit Pollution Abatement Costs difference before and after the "Carbon neutral growth from 2020―strategy was proposed. Research in Transportation Economics, 2021, 90, 101120.	2.2	2
131	An application of Dynamic Range Adjusted Measure with weak-G disposability in evaluating airline energy efficiency. Energy Efficiency, 2021, 14, 1.	1.3	1
132	Exploring the effect of COVID-19 on airline environmental efficiency through an interval epsilon-based measure model. Environmental Science and Pollution Research, 2022, 29, 25623-25638.	2.7	0