List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1488009/publications.pdf Version: 2024-02-01

SHANDONGL

#	Article	IF	CITATIONS
1	Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nature Materials, 2021, 20, 76-83.	27.5	432
2	Ultrahigh-frequency ferromagnetic properties of FeCoHf films deposited by gradient sputtering. Applied Physics Letters, 2008, 92, .	3.3	152
3	Eâ€Field Control of Exchange Bias and Deterministic Magnetization Switching in AFM/FM/FE Multiferroic Heterostructures. Advanced Functional Materials, 2011, 21, 2593-2598.	14.9	149
4	Tailoring multi-layer architectured FeS2@C hybrids for superior sodium-, potassium- and aluminum-ion storage. Energy Storage Materials, 2019, 22, 228-234.	18.0	143
5	Deeply Nesting Zinc Sulfide Dendrites in Tertiary Hierarchical Structure for Potassium Ion Batteries: Enhanced Conductivity from Interior to Exterior. ACS Nano, 2019, 13, 6906-6916.	14.6	139
6	Ferromagnetic-like behavior of ultrafine NiO nanocrystallites. Journal of Magnetism and Magnetic Materials, 2004, 277, 363-367.	2.3	119
7	Electric field modulation of magnetoresistance in multiferroic heterostructures for ultralow power electronics. Applied Physics Letters, 2011, 98, .	3.3	100
8	Improved Electrochemical Performance Based on Nanostructured SnS2@CoS2–rGO Composite Anode for Sodium-Ion Batteries. Nano-Micro Letters, 2018, 10, 46.	27.0	96
9	Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithiumâ€lon Batteries. Advanced Materials, 2021, 33, e2006629.	21.0	80
10	Phase–composition and temperature dependence of electrocaloric effect in lead–free Bi0.5Na0.5TiO3–BaTiO3–(Sr0.7Bi0.2â−¡0.1)TiO3 ceramics. Journal of the European Ceramic Society, 2017, 4732-4740.	375.7	76
11	Tunable Optical Mode Ferromagnetic Resonance in FeCoB/Ru/FeCoB Synthetic Antiferromagnetic Trilayers under Uniaxial Magnetic Anisotropy. Advanced Functional Materials, 2016, 26, 3738-3744.	14.9	75
12	Type–I pseudo–first–order phase transition induced electrocaloric effect in lead–free Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. Applied Physics Letters, 2017, 110, .	3.3	73
13	Constructing Three-Dimensional Porous Carbon Framework Embedded with FeSe ₂ Nanoparticles as an Anode Material for Rechargeable Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38862-38871.	8.0	69
14	Reacquainting the Electrochemical Conversion Mechanism of FeS ₂ Sodium-Ion Batteries by Operando Magnetometry. Journal of the American Chemical Society, 2021, 143, 12800-12808.	13.7	69
15	3D Ordered Porous Hybrid of ZnSe/ <i>N</i> â€doped Carbon with Anomalously High Na ⁺ Mobility and Ultrathin Solid Electrolyte Interphase for Sodiumâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2106194.	14.9	66
16	Electrically induced enormous magnetic anisotropy in Terfenol-D/lead zinc niobate-lead titanate multiferroic heterostructures. Journal of Applied Physics, 2012, 112, .	2.5	59
17	Nonaqueous Aluminum Ion Batteries: Recent Progress and Prospects. , 2020, 2, 887-904.		57
18	CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2017, 224, 90-95.	5.2	56

#	Article	IF	CITATIONS
19	Nanosized MoSe ₂ @Carbon Matrix: A Stable Host Material for the Highly Reversible Storage of Potassium and Aluminum Ions. ACS Applied Materials & Interfaces, 2019, 11, 44333-44341.	8.0	56
20	Driving ferromagnetic resonance frequency of FeCoB/PZN-PT multiferroic heterostructures to Ku-band via two-step climbing: composition gradient sputtering and magnetoelectric coupling. Scientific Reports, 2014, 4, 7393.	3.3	55
21	Revealing the multiple cathodic and anodic involved charge storage mechanism in an FeSe ₂ cathode for aluminium-ion batteries by <i>in situ</i> magnetometry. Energy and Environmental Science, 2022, 15, 311-319.	30.8	53
22	Three-Dimensional Hierarchical Flowerlike FeP Wrapped with N-Doped Carbon Possessing Improved Li ⁺ Diffusion Kinetics and Cyclability for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 39961-39969.	8.0	52
23	Construction of the POMOF@Polypyrrole Composite with Enhanced Ion Diffusion and Capacitive Contribution for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 6265-6275.	8.0	52
24	Temperature prediction of lithiumâ€ion batteries based on electrochemical impedance spectrum: A review. International Journal of Energy Research, 2022, 46, 10372-10388.	4.5	51
25	Fast potassium storage in porous CoV2O6 nanosphere@graphene oxide towards high-performance potassium-ion capacitors. Energy Storage Materials, 2021, 40, 250-258.	18.0	46
26	Self-Supported Amorphous SnO ₂ /TiO ₂ Nanocomposite Films with Improved Electrochemical Performance for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A3072-A3078.	2.9	45
27	SnO2 nanoflower arrays on an amorphous buffer layer as binder-free electrodes for flexible lithium-ion batteries. Applied Surface Science, 2020, 527, 146910.	6.1	42
28	Influence of structural evolution on electrocaloric effect in Bi0.5Na0.5TiO3-SrTiO3 ferroelectric ceramics. Journal of Applied Physics, 2018, 124, .	2.5	40
29	Spherical-like ZnSe with facile synthesis as a potential electrode material for lithium ion batteries. Materials Letters, 2015, 146, 96-98.	2.6	39
30	Engineering optical mode ferromagnetic resonance in FeCoB films with ultrathin Ru insertion. Scientific Reports, 2016, 6, 33349.	3.3	39
31	High-frequency ferromagnetic properties of as-deposited FeCoZr films with uniaxial magnetic anisotropy. Journal Physics D: Applied Physics, 2008, 41, 055004.	2.8	38
32	Inequivalence of direct and converse magnetoelectric coupling at electromechanical resonance. Applied Physics Letters, 2013, 103, 182905.	3.3	37
33	Anomalous magnetic properties in Co3O4 nanoparticles covered with polymer decomposition residues. Journal of Applied Physics, 2004, 95, 7420-7422.	2.5	36
34	Optimization of NiFe 2 O 4 /rGO composite electrode for lithium-ion batteries. Applied Surface Science, 2017, 416, 308-317.	6.1	36
35	RF Magnetic Properties of FeCoB/Al\$_{2}\$O\$_{3}\$/FeCoB Structure With Varied Al\$_{2}\$O\$_{3}\$ Thickness. IEEE Transactions on Magnetics, 2011, 47, 3104-3107.	2.1	35
36	3D Heterogeneous Co ₃ O ₄ @Co ₃ S ₄ Nanoarrays Grown on Ni Foam as a Binderâ€Free Electrode for Lithiumâ€Ion Batteries. ChemElectroChem, 2018, 5, 309-315.	3.4	35

#	Article	IF	CITATIONS
37	Role of amorphous grain boundaries in nanocomposite NdFeB permanent magnets. Journal of Applied Physics, 2002, 92, 7514-7518.	2.5	34
38	Two-dimensionally porous cobalt sulfide nanosheets as a high-performance cathode for aluminum-ion batteries. Journal of Power Sources, 2019, 440, 227147.	7.8	33
39	Antimony Selenide Nanorods Decorated on Reduced Graphene Oxide with Excellent Electrochemical Properties for Li-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A2922-A2929.	2.9	30
40	Poly(vinylidene fluoride-trifluoroethylene)/cobalt ferrite composite films with a self-biased magnetoelectric effect for flexible AC magnetic sensors. Journal of Materials Science, 2021, 56, 9728-9740.	3.7	30
41	Evidence for dual anions co-insertion in a transition metal chalcogenide cathode material NiSe2 for high-performance rechargeable aluminum-ion batteries. Energy Storage Materials, 2022, 47, 336-344.	18.0	29
42	Ultra-wide detectable concentration range of GMR biosensors using Fe3O4 microspheres. Journal of Magnetism and Magnetic Materials, 2016, 417, 25-29.	2.3	27
43	Stress-Enhanced Interlayer Exchange Coupling and Optical-Mode FMR Frequency in Self-Bias FeCoB/Ru/FeCoB Trilayers. ACS Applied Materials & Interfaces, 2018, 10, 8853-8859.	8.0	27
44	Synthesis and anomalous magnetic properties of CoCr2O4 nanocrystallites with lattice distortion. Journal of Magnetism and Magnetic Materials, 2006, 305, 448-451.	2.3	26
45	Large E-field tunability of microwave ferromagnetic properties in Fe59.3Co28.0Hf12.7/PZN-PT multiferroic composites. Journal of Applied Physics, 2014, 115, 17C723.	2.5	25
46	Dendrite-structured FeF2 consisting of closely linked nanoparticles as cathode for high-performance lithium-ion capacitors. Journal of Energy Chemistry, 2021, 55, 517-523.	12.9	25
47	Tunable magnetoresistance devices based on multiferroic heterostructures. Journal of Applied Physics, 2011, 109, 07D913.	2.5	24
48	Large E-field tunability of magnetic anisotropy and ferromagnetic resonance frequency of co-sputtered Fe50Co50-B film. Journal of Applied Physics, 2015, 117, .	2.5	24
49	A Nanocrystalline Fe2O3 Film Anode Prepared by Pulsed Laser Deposition for Lithium-Ion Batteries. Nanoscale Research Letters, 2018, 13, 60.	5.7	23
50	Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry. Science Bulletin, 2022, 67, 1145-1153.	9.0	23
51	Surface spin pinning effect of polymer decomposition residues in CoCr2O4 nanocrystallites system. Journal of Magnetism and Magnetic Materials, 2004, 281, 11-16.	2.3	22
52	High In-Plane Magnetic Anisotropy and Microwave Frequency Performance of Soft Magnetic (Fe\$_{50}\$Co\$_{50}\$)\$_{1-{m x}}\$(Al\$_{2}\$O\$_{3}\$)\$_{m x}\$ Films Prepared by Modified Composition Gradient Sputtering. IEEE Transactions on Magnetics, 2011, 47, 3935-3938.	2.1	22
53	Electrocaloric effect in lead-free 0.5Ba(Zr0.2Ti0.8) O3-0.5(Ba0.7Ca0.3) TiO3 ceramic measured by direct and indirect methods. Ceramics International, 2018, 44, 21950-21955.	4.8	22
54	Effect of annealing on the magnetic entropy change of CoMnSb alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 428, 332-335.	5.6	21

#	Article	IF	CITATIONS
55	Large electrocaloric effect in La-doped 0.88Pb(Mg1/3Nb2/3)O3-0.12PbTiO3 relaxor ferroelectric ceramics. Journal of Alloys and Compounds, 2017, 727, 785-791.	5.5	21
56	Magnetic anisotropy in carbon encapsulated Co/CoO "lines―with large exchange bias. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 307, 69-75.	2.1	20
57	Microwave Frequency Performance and High Magnetic Anisotropy of \${m Fe}_{70}{m Co}_{30}-{m B}\$ Films Prepared by a Modified Composition Gradient Sputtering. IEEE Transactions on Magnetics, 2012, 48, 4313-4316.	2.1	20
58	Tuning high frequency magnetic properties and damping of FeGa, FeGaN and FeGaB thin films. AIP Advances, 2017, 7, .	1.3	19
59	Unraveling the Evolution of Transition Metals during Li Alloying–Dealloying by In-Operando Magnetometry. Chemistry of Materials, 2022, 34, 5852-5859.	6.7	19
60	The enhanced magnetic properties of Ni nanocrystallites induced by the coupling between Ni/NiO interfaces. Journal of Alloys and Compounds, 2006, 425, 1-3.	5.5	18
61	Large E-field tunability of microwave ferromagnetic properties in Fe50Co50-Hf/lead zinc niobate–lead titanate multiferroic laminates. Journal of Applied Physics, 2013, 113, .	2.5	18
62	The microstructure and magnetic properties of NdFeB magnets directly solidified at a low cooling rate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 380, 143-146.	5.6	17
63	Soft magnetism and microwave magnetic properties of Fe-Co-Hf films deposited by composition gradient sputtering. Journal of Applied Physics, 2011, 109, .	2.5	15
64	E-field tuning microwave frequency performance of Co2FeSi/lead zinc niobate–lead titanate magnetoelectric coupling composites. Journal of Applied Physics, 2012, 111, 07C705.	2.5	15
65	Stress competition and vortex magnetic anisotropy in FeCoAlO high-frequency soft magnetic films with gradient Al-O contents. Journal of Applied Physics, 2013, 113, 17A332.	2.5	15
66	Investigation on the structures and magnetic properties of carbon or nitrogen doped cobalt ferrite nanoparticles. Scientific Reports, 2018, 8, 7916.	3.3	15
67	The effect of the particle size and magnetic moment of the Fe3O4 superparamagnetic beads on the sensitivity of biodetection. AIP Advances, 2019, 9, .	1.3	15
68	Reversible control of magnetization in Fe ₃ O ₄ nanoparticles by a supercapacitor. Journal of Physics Condensed Matter, 2020, 32, 334001.	1.8	15
69	CoMnSb: A magnetocaloric material with a large low-field magnetic entropy change at intermediate temperature. Journal of Applied Physics, 2006, 99, 063901.	2.5	14
70	Spindle-like Fe3O4 nanoparticles for improving sensitivity and repeatability of giant magnetoresistance biosensors. Journal of Applied Physics, 2019, 126, .	2.5	14
71	Effect of Nb addition on the magnetic properties and magnetocaloric effect of CoMnSb alloy. Journal of Alloys and Compounds, 2007, 427, 15-17.	5.5	13
72	High-frequency ferromagnetic inductors covered by as-deposited FeCoAlO films with stress-induced uniaxial anisotropy. Thin Solid Films, 2008, 516, 7748-7752.	1.8	13

#	Article	IF	CITATIONS
73	Ferromagnetic CrSb thicker films epitaxially grown on NaCl (1 0 0) substrates. Journal Physics D: Applied Physics, 2008, 41, 175004.	2.8	13
74	Extrinsic damping contribution in soft magnetic thin films detected by permeability spectra. Journal of Applied Physics, 2011, 109, 07D322.	2.5	13
75	The influence of bias magnetization of nanoparticles on GMR sensor signal and sensitivity for the ultra-low concentration detection. Journal of Magnetism and Magnetic Materials, 2018, 453, 132-136.	2.3	12
76	Dual-mode ferromagnetic resonance in an FeCoB/Ru/FeCoB synthetic antiferromagnet with uniaxial anisotropy. Applied Physics Letters, 2018, 112, .	3.3	12
77	Mechanistic understanding of the charge storage processes in FeF ₂ aggregates assembled with cylindrical nanoparticles as a cathode material for lithiumâ€ion batteries by in situ magnetometry. , 2022, 4, 1011-1020.		11
78	Synthesis of chaoite-like macrotubes at low temperature and ambient pressure. Carbon, 2007, 45, 2946-2950.	10.3	10
79	Ferromagnetic CrSb film fabricated by pulse-laser deposition and rapidly annealing. Journal of Magnetism and Magnetic Materials, 2007, 312, 305-309.	2.3	10
80	Ultrahigh Frequency and Anti-Interference Optical-Mode Resonance with Biquadratic Coupled FeCoB/Ru/FeCoB Trilayers. ACS Applied Materials & Interfaces, 2019, 11, 48230-48238.	8.0	10
81	Effects of hot isothermal pressing on the microstructures and soft magnetic properties of nanocrystalline Fe86Zr7B6Cu1ribbons. Journal Physics D: Applied Physics, 2004, 37, 151-154.	2.8	9
82	Effect of electric field on the crystallization process of amorphous Fe86Zr7B6Cu1alloy. Journal Physics D: Applied Physics, 2005, 38, 729-732.	2.8	9
83	Improvement of high-frequency properties of Co ₂ FeSi Heusler films by ultrathin Ru underlayer*. Chinese Physics B, 2020, 29, 046202.	1.4	9
84	Interfacial Engineering of Self-Supported SnO2Nanorod Arrays as Anode for Flexible Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 120515.	2.9	9
85	Influence of the phases structure on the acoustic and optical modes ferromagnetic resonance of FeNi stripe domain films. Journal of Magnetism and Magnetic Materials, 2019, 475, 103-107.	2.3	8
86	Evaluation of Metglas/polyvinylidene fluoride magnetoelectric bilayer composites for flexible in-plane resonant magnetic sensors. Journal Physics D: Applied Physics, 2021, 54, 095003.	2.8	8
87	Ferromagnetic chaoite macrotubes prepared at low temperature and pressure. Applied Physics Letters, 2007, 90, 232507.	3.3	7
88	Joule heating - A significant factor in electrocaloric effect. Ceramics International, 2019, 45, 16992-16998.	4.8	7
89	Tuning the electrocaloric effect in 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics by relaxor phase blending. Ceramics International, 2020, 46, 4454-4461.	4.8	7
90	The magnetic entropy change in CoMnSb alloys with different crystal sizes. Journal of Alloys and Compounds, 2008, 448, 73-76.	5.5	6

#	Article	IF	CITATIONS
91	Microwave Frequency Performance and High Magnetic Anisotropy of Nanocrystalline Fe ₇₀ Co ₃₀ -B Films Prepared by Composition Gradient Sputtering. Journal of Nanoscience and Nanotechnology, 2013, 13, 1091-1094.	0.9	6
92	Quasi magnetic isotropy and microwave performance of FeCoB multilayer laminated by uniaxial anisotropic layers. Journal of Applied Physics, 2014, 115, 17A310.	2.5	6
93	Substantially enhancing ferromagnetic resonance frequency via superposition of composition gradient sputtering and magnetoelectric coupling in FeCoAlO/PZN–PT heterostructures. Journal of Alloys and Compounds, 2015, 642, 136-139.	5.5	6
94	Evolutions of acoustic and optical mode resonances in the spin reorientation Permalloy film. Journal of Applied Physics, 2019, 126, .	2.5	6
95	AC/DC dual-mode magnetoelectric sensor with high magnetic field resolution and broad operating bandwidth. AIP Advances, 2021, 11, .	1.3	6
96	A working-point perturbation method for the magnetoelectric sensor to measure DC to ultralow-frequency-AC weak magnetic fields simultaneously. AIP Advances, 2021, 11, .	1.3	6
97	Influences of sputtering gas pressure and gas flow rate on microwave characteristics of FeCoAlO thin films. Thin Solid Films, 2011, 519, 8292-8295.	1.8	5
98	Electric field tunability of microwave soft magnetic properties of Co2FeAl Heusler alloy film. Journal of Applied Physics, 2015, 117, 17B722.	2.5	4
99	Stress-controllable microwave ferromagnetic performances of amorphous Fe56Co24B20 films prepared by pulsed laser deposition. Thin Solid Films, 2017, 636, 15-19.	1.8	4
100	Temperature-insensitive large electrocaloric effect near room temperature in La3+-doped lead magnesium niobate-lead titanate ceramics. Ceramics International, 2020, 46, 8391-8397.	4.8	4
101	[(FeCoB/Ru/FeCoB)/ZnO]n superlattice multilayer: A real optical mode ferromagnetic resonance thick-film. Applied Physics Letters, 2020, 116, .	3.3	4
102	Magnetic moment configuration: One of decisive factors to enhance the optical mode resonance in interlayer exchange coupled trilayers. Journal of Alloys and Compounds, 2021, 875, 159881.	5.5	4
103	E-Field Tuned Rotation of Magnetic Anisotropy and Enhanced Microwave Performance in FeCoAlO/PZN–PT Multiferroic Composite Prepared by Composition Gradient Sputtering. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	3
104	Film Thickness Gradient-Induced Magnetic Anisotropy and Ferromagnetic Resonance in Fe ₅₆ Co ₂₄ B ₂₀ Amorphous Films Prepared by Pulse Laser Deposition. IEEE Transactions on Magnetics, 2015, 51, 1-3.	2.1	3
105	Controllable rotation of magnetic anisotropy in FeCoB films by sputtering pressure. Journal of Magnetism and Magnetic Materials, 2017, 443, 211-215.	2.3	3
106	Orientation control of optical mode ferromagnetic resonance: From uniaxial to omni-directional. Applied Physics Letters, 2021, 118, .	3.3	3
107	One-Pot Synthesized Amorphous Cobalt Sulfide With Enhanced Electrochemical Performance as Anodes for Lithium-Ion Batteries. Frontiers in Chemistry, 2021, 9, 818255.	3.6	3
108	Electrical control of ON–OFF magnetism and exchange bias via reversible ionic motion. Applied Physics Letters, 2022, 120, 082405.	3.3	3

#	Article	IF	CITATIONS
109	High-frequency ferromagnetic properties of multilayered FeCoHfO/AlOx films. Materials Research Bulletin, 2010, 45, 1916-1920.	5.2	2
110	X-Ray Absorption Spectra and Self-Bias Ferromagnetic Resonance of FeCoB Films Prepared by Composition Gradient Sputtering. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	2
111	Band-notched ultrawide band antenna loaded with ferrite slab. AIP Advances, 2017, 7, .	1.3	2
112	Electric Field Tuning Ferromagnetic Resonance Frequency Shift in Oblique Sputtered Fe42Co46Hf12/PZN-PT Multiferroic Heterostructures. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	2
113	Tuning microwave magnetic properties of composition gradient FeCoB/Ru/FeCoB trilayer films. Journal of Magnetism and Magnetic Materials, 2018, 458, 200-203.	2.3	2
114	Dynamic interlayer exchange coupling in magnetic anisotropic FeCoB/Ru/FeCoB sandwich trilayers. Journal of Magnetism and Magnetic Materials, 2021, 527, 167801.	2.3	2
115	Self-biased optical mode ferromagnetic resonance beyond 22ÂGHz in artificial exchange coupled trilayers. Journal of Magnetism and Magnetic Materials, 2022, 547, 168955.	2.3	2
116	Hydrothermal Preparation and High Electrochemical Performance of NiS Nanospheres as Anode for Lithium-Ion Batteries. Frontiers in Chemistry, 2021, 9, 812274.	3.6	2
117	Annealing enhanced ferromagnetic resonance of thickness-dependent FeGa films. Applied Physics Letters, 2022, 120, 202402.	3.3	2
118	Self-biased microwave ferromagnetic performance of patterned Ni80Fe20 thin films. AIP Advances, 2017, 7, 056301.	1.3	1
119	Phase formation and electrocaloric effect in nonstoichiometric 0.94Bi0.5+xNa0.5TiO3-0.06BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 3465-3471.	2.2	1
120	Co ₃ S ₄ Nanosheets on Carbon Cloth as Free-Standing Anode with Improved Pseudocapacitive Storage for High-Performance Li-Ion Batteries. Nano, 2021, 16, 2150007.	1.0	1
121	Coherent GHz lattice and magnetization excitations in thin epitaxial Ag/Fe/Cr/Fe films. Physical Review B, 2021, 104, .	3.2	1
122	Electric-field tunable rotation of optical mode ferromagnetic resonance in FeCoB/Ru/FeCoB/PMN-PT multilayers. Journal of Alloys and Compounds, 2022, 901, 163475.	5.5	1
123	Electrochemical Role of Transition Metals in Sn–Fe Alloy Revealed by Operando Magnetometry. Chinese Physics Letters, 2022, 39, 028202.	3.3	1
124	Hollow CoS/C Structures for High-Performance Li, Na, K Ion Batteries. Frontiers in Chemistry, 2022, 10, 845742.	3.6	1
125	Enhancement of high-frequency performances by Al ₂ O ₃ interlayer in FeCoHf/Al ₂ O ₃ /FeCoHf trilayers. AIP Advances, 2022, 12, 055224.	1.3	1
126	Self-Bias Ferromagnetic Resonance and Quasi-Magnetic Isotropy of (FeCoB/MgO) ₆ Multilayers Prepared by Composition Gradient Sputtering. IEEE Transactions on Magnetics, 2015, 51, 1-3.	2.1	0

#	Article	IF	CITATIONS
127	Electric field tunable high-frequency performance in high-resistivity Fe0.5Co0.5-MgO/lead zinc niobate-lead titanate nanogranular film multiferroic heterostructures. Thin Solid Films, 2019, 686, 137425.	1.8	0
128	Large tunability of frequency in Fe0.5Co0.5-ZnO/PZN-PT nanogranular films with high resistivity. Journal of Magnetism and Magnetic Materials, 2019, 483, 48-53.	2.3	0
129	Multiple order spin-wave resonance in composition gradient sputtering FeCoB thin films. AIP Advances, 2021, 11, 075207.	1.3	0
130	Interlayer Coupling and High-Frequency Performance in Magnetic Anisotropic FeCoB/Hf/FeCoB Trilayers with Various Hf Thicknesses. Magnetochemistry, 2022, 8, 65.	2.4	0