
Sebastian Kelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1487964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The non-invasive assessment of myocardial work by pressure-strain analysis: clinical applications. Heart Failure Reviews, 2022, 27, 1261-1279.	3.9	21
2	Comparison of machine learning and deep learning for view identification from cardiac magnetic resonance images. Clinical Imaging, 2022, 82, 121-126.	1.5	10
3	Evidence-based cardiovascular magnetic resonance cost-effectiveness calculator for the detection of significant coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 1.	3.3	15
4	Editorial: Advances in the Prevention and Rehabilitation of Cardiovascular Diseases via Aerobic Exercise. Frontiers in Cardiovascular Medicine, 2022, 9, 858785.	2.4	0
5	A Collaborative Approach for the Development and Application of Machine Learning Solutions for CMR-Based Cardiac Disease Classification. Frontiers in Cardiovascular Medicine, 2022, 9, 829512.	2.4	5
6	Case Series of Potential Cardiac Inflammation Associated With Various SARS-CoV-2 Vaccinations Assessed by Cardiac MRI. Frontiers in Cardiovascular Medicine, 2022, 9, 829392.	2.4	6
7	Predicting visceral adipose tissue in older adults: A pilot clinical study. Clinical Nutrition, 2022, 41, 810-816.	5.0	2
8	Synthetic Extracellular Volume in Cardiac Magnetic Resonance Without Blood Sampling: a Reliable Tool to Replace Conventional Extracellular Volume. Circulation: Cardiovascular Imaging, 2022, 15, 101161CIRCIMAGING121013745.	2.6	10
9	Longâ€ŧerm prognostic value of vasodilator stress cardiac magnetic resonance in patients with atrial fibrillation. ESC Heart Failure, 2022, 9, 110-121.	3.1	2
10	Imaging Assessment of Endothelial Function: An Index of Cardiovascular Health. Frontiers in Cardiovascular Medicine, 2022, 9, 778762.	2.4	9
11	Hemodynamic Changes During Physiological and Pharmacological Stress Testing in Patients With Heart Failure: A Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine, 2022, 9, 718114.	2.4	0
12	CMR findings after COVID-19 and after COVID-19-vaccination—same but different?. International Journal of Cardiovascular Imaging, 2022, 38, 2057-2071.	0.6	3
13	Brief Research Report: Quantitative Analysis of Potential Coronary Microvascular Disease in Suspected Long-COVID Syndrome. Frontiers in Cardiovascular Medicine, 2022, 9, .	2.4	11
14	The role of non-invasive devices for the telemonitoring of heart failure patients. Heart Failure Reviews, 2021, 26, 1063-1080.	3.9	29
15	Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nature Reviews Cardiology, 2021, 18, 169-193.	13.7	589
16	Prevalence and prognostic impact of hsCRP elevation are ageâ€dependent in women but not in men undergoing percutaneous coronary intervention. Catheterization and Cardiovascular Interventions, 2021, 97, E936-E944.	1.7	3
17	Diagnostic value of cardiovascular magnetic resonance in comparison to endomyocardial biopsy in cardiac amyloidosis: a multi-centre study. Clinical Research in Cardiology, 2021, 110, 555-568.	3.3	33
18	Cardiac magnetic resonance imaging: the echo of the obese?. European Heart Journal Cardiovascular Imaging, 2021, 22, 528-529.	1.2	1

#	Article	IF	CITATIONS
19	Review of safety reports of cardiac MR-imaging in patients with recently implanted coronary artery stents at various field strengths. Expert Review of Medical Devices, 2021, 18, 83-90.	2.8	1
20	Headâ€ŧoâ€head comparison of cardiovascular MR feature tracking cine versus acquisitionâ€based deformation strain imaging using myocardial tagging and strain encoding. Magnetic Resonance in Medicine, 2021, 85, 357-368.	3.0	26
21	COVIDâ€19â€convalescence phase unmasks a silent myocardial infarction due to coronary plaque rupture. ESC Heart Failure, 2021, 8, 971-973.	3.1	15
22	Myocardial deformation assessed among heart failure entities by cardiovascular magnetic resonance imaging. ESC Heart Failure, 2021, 8, 890-897.	3.1	10
23	Assessment of 10-Year Left-Ventricular-Remodeling by CMR in Patients Following Aortic Valve Replacement. Frontiers in Cardiovascular Medicine, 2021, 8, 645693.	2.4	4
24	Circulatory efficiency in patients with severe aortic valve stenosis before and after aortic valve replacement. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 15.	3.3	6
25	C-Reactive Protein Apheresis as Anti-inflammatory Therapy in Acute Myocardial Infarction: Results of the CAMI-1 Study. Frontiers in Cardiovascular Medicine, 2021, 8, 591714.	2.4	47
26	Left and right ventricular strain using fast strain-encoded cardiovascular magnetic resonance for the diagnostic classification of patients with chronic non-ischemic heart failure due to dilated, hypertrophic cardiomyopathy or cardiac amyloidosis. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 45.	3.3	18
27	Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 60.	3.3	21
28	Going after COVID-19 myocarditis. European Heart Journal Cardiovascular Imaging, 2021, 22, 852-854.	1.2	9
29	Impact of fully automated assessment on interstudy reproducibility of biventricular volumes and function in cardiac magnetic resonance imaging. Scientific Reports, 2021, 11, 11648.	3.3	7
30	Multiparametric Early Detection and Prediction of Cardiotoxicity Using Myocardial Strain, T1 and T2 Mapping, and Biochemical Markers: A Longitudinal Cardiac Resonance Imaging Study During 2 Years of Follow-Up. Circulation: Cardiovascular Imaging, 2021, 14, e012459.	2.6	35
31	Fast Strain-Encoded Cardiac MagneticÂResonance for Diagnostic Classification and Risk Stratification of Heart Failure Patients. JACC: Cardiovascular Imaging, 2021, 14, 1177-1188.	5.3	37
32	Traveling Volunteers: A Multiâ€Vendor, Multiâ€Center Study on Reproducibility and Comparability of 4D Flow Derived Aortic Hemodynamics in Cardiovascular Magnetic Resonance. Journal of Magnetic Resonance Imaging, 2021, , .	3.4	11
33	In-hospital Heart Rate Reduction With Beta Blockers and Ivabradine Early After Recovery in Patients With Acute Decompensated Heart Failure Reduces Short-Term Mortality and Rehospitalization. Frontiers in Cardiovascular Medicine, 2021, 8, 665202.	2.4	5
34	Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 92.	3.3	26
35	Non-invasive CMR-Based Quantification of Myocardial Power and Efficiency Under Stress and Ischemic Conditions in Landrace Pigs. Frontiers in Cardiovascular Medicine, 2021, 8, 689255.	2.4	6
36	Cardiac Magnetic Resonance Reveals Incipient Cardiomyopathy Traits in Adult Patients With Phenylketonuria. Journal of the American Heart Association, 2021, 10, e020351.	3.7	4

#	Article	IF	CITATIONS
37	When tissue and outcomes are the issue. Cardiac magnetic resonance for patients with suspected cardiac tumours. European Heart Journal, 2021, 43, 81-83.	2.2	8
38	Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis. Frontiers in Cardiovascular Medicine, 2021, 8, 706628.	2.4	7
39	Intracranial Aneurysm Rupture Risk Estimation Utilizing Vessel-Graphs and Machine Learning. Lecture Notes in Computer Science, 2021, , 93-103.	1.3	3
40	Deep-Learning-Based Myocardial Pathology Detection. Lecture Notes in Computer Science, 2021, , 369-377.	1.3	1
41	Impact of Muscle Mass as a Prognostic Factor for Failed Waiting Time Prior to Heart Transplantation. Frontiers in Cardiovascular Medicine, 2021, 8, 731293.	2.4	1
42	Relationship between quality of life indicators and cardiac status indicators in chemotherapy patients. Zdravstveno Varstvo, 2021, 60, 199-209.	0.9	6
43	Cardiovascular magnetic resonance findings in nonâ€hospitalized paediatric patients after recovery from COVIDâ€19. ESC Heart Failure, 2021, 8, 5583-5588.	3.1	10
44	Late onset apical hypertrophic cardiomyopathy: a case report. European Heart Journal - Case Reports, 2021, 5, ytaa493.	0.6	2
45	Epicardial Fat Expansion in Diabetic and Obese Patients With Heart Failure and Preserved Ejection Fraction-A Specific HFpEF Phenotype. Frontiers in Cardiovascular Medicine, 2021, 8, 720690.	2.4	3
46	Epicardial Fat Expansion in Diabetic and Obese Patients With Heart Failure and Preserved Ejection Fraction—A Specific HFpEF Phenotype. Frontiers in Cardiovascular Medicine, 2021, 8, 720690.	2.4	25
47	SGLT2 Inhibition in HFpEF. Do We Need More Quantitative and Load Independent Metrics to Understand the Results of the EMPEROR-Preserved Trial?. Frontiers in Cardiovascular Medicine, 2021, 8, 822968.	2.4	3
48	SCMR level II/independent practitioner training guidelines for cardiovascular magnetic resonance: integration of a virtual training environment. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 139.	3.3	5
49	COVID-19 vs. Classical Myocarditis Associated Myocardial Injury Evaluated by Cardiac Magnetic Resonance and Endomyocardial Biopsy. Frontiers in Cardiovascular Medicine, 2021, 8, 737257.	2.4	33
50	Fast-Strain Encoded Cardiac Magnetic Resonance During Vasodilator Perfusion Stress Testing. Frontiers in Cardiovascular Medicine, 2021, 8, 765961.	2.4	10
51	Long-term left atrial remodeling after ablation of persistent atrial fibrillation: 7-year follow-up by cardiovascular magnetic resonance imaging. Journal of Interventional Cardiac Electrophysiology, 2020, 58, 21-27.	1.3	9
52	Quantitative detection of changes in regional wall motion using real time strain-encoded cardiovascular magnetic resonance. Magnetic Resonance Imaging, 2020, 66, 193-198.	1.8	2
53	Validation of simple measures of aortic distensibility based on standard 4-chamber cine CMR: a new approach for clinical studies. Clinical Research in Cardiology, 2020, 109, 454-464.	3.3	4
54	Comparison of feature tracking, fast‣ENC, and myocardial tagging for global and segmental left ventricular strain. ESC Heart Failure, 2020, 7, 523-532.	3.1	64

#	Article	IF	CITATIONS
55	CARDIOTOXICITY DURING CANCER TREATMENT CAUSES MORE REGIONAL THAN GLOBAL DYSFUNCTION: THE PREFECT STUDY. Journal of the American College of Cardiology, 2020, 75, 1824.	2.8	6
56	Cardiac Myxomas Show Elevated Native T1, T2 Relaxation Time and ECV on Parametric CMR. Frontiers in Cardiovascular Medicine, 2020, 7, 602137.	2.4	7
57	Feasibility and Robustness of 3T Magnetic Resonance Angiography Using Modified Dixon Fat Suppression in Patients With Known or Suspected Peripheral Artery Disease. Frontiers in Cardiovascular Medicine, 2020, 7, 549392.	2.4	2
58	Cardiovascular magnetic resonance-derived left ventricular mechanics—strain, cardiac power and end-systolic elastance under various inotropic states in swine. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 79.	3.3	6
59	Myocardial strain analysis of the right ventricle: comparison of different cardiovascular magnetic resonance and echocardiographic techniques. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 51.	3.3	23
60	Vorstellung des neuen Online-Lernmoduls CMR (eCardiology). Kardiologe, 2020, 14, 239-242.	0.0	1
61	INTRAMYOCARDIAL FAST-SENC CMR STRAIN IS LESS IMPACTED BY COMPENSATORY MECHANISMS THAN ECHOCARDIOGRAPHY IN MONITORING CARDIOTOXICITY: THE PREFECT STUDY. Journal of the American College of Cardiology, 2020, 75, 1795.	2.8	0
62	Proteomic Analysis Reveals Upregulation of ACE2 (Angiotensin-Converting Enzyme 2), the Putative SARS-CoV-2 Receptor in Pressure–but Not Volume-Overloaded Human Hearts. Hypertension, 2020, 76, e41-e43.	2.7	6
63	Society for Cardiovascular Magnetic Resonance (SCMR) recommended CMR protocols for scanning patients with active or convalescent phase COVID-19 infection. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 61.	3.3	63
64	A Random Shuffle Method to Expand a Narrow Dataset and Overcome the Associated Challenges in a Clinical Study: A Heart Failure Cohort Example. Frontiers in Cardiovascular Medicine, 2020, 7, 599923.	2.4	4
65	Estimation of total collagen volume: a T1 mapping versus histological comparison study in healthy Landrace pigs. International Journal of Cardiovascular Imaging, 2020, 36, 1761-1769.	1.5	4
66	Left ventricular volume reduction and reshape–Ââ€~Reâ€≺scp>STICHING' the field. Reply. European Journal of Heart Failure, 2020, 22, 1053-1054.	7.1	0
67	Splenic Switchâ€Off for Determining the Optimal Dosage for Adenosine Stress Cardiac MR in Terms of Stress Effectiveness and Patient Safety. Journal of Magnetic Resonance Imaging, 2020, 52, 1732-1742.	3.4	3
68	Variability of Myocardial Strain During Isometric Exercise in Subjects With and Without Heart Failure. Frontiers in Cardiovascular Medicine, 2020, 7, 111.	2.4	13
69	Multilayer myocardial strain improves the diagnosis of heart failure with preserved ejection fraction. ESC Heart Failure, 2020, 7, 3240-3245.	3.1	17
70	Cardiovascular magnetic resonance feature tracking in pigs: a reproducibility and sample size calculation study. International Journal of Cardiovascular Imaging, 2020, 36, 703-712.	1.5	6
71	Impact of valve morphology, hypertension and age on aortic wall properties in patients with coarctation: a two-centre cross-sectional study. BMJ Open, 2020, 10, e034853.	1.9	5
72	Case Report: Early Transplant Rejection of a Methanol-Intoxicated Donor Heart in a Young Female Patient. A Diagnostic Approach With CMR, Cardiac Biopsy, and Genetic Risk Assessment. Frontiers in Immunology, 2020, 11, 575635.	4.8	0

#	Article	IF	CITATIONS
73	A multi-vendor, multi-center study on reproducibility and comparability of fast strain-encoded cardiovascular magnetic resonance imaging. International Journal of Cardiovascular Imaging, 2020, 36, 899-911.	1.5	13
74	Cardiac radiomics: an interactive approach for 4D data exploration. Current Directions in Biomedical Engineering, 2020, 6, .	0.4	3
75	Minimally invasive left ventricular reconstruction of a postinfarction, anterior left ventricular scar (BioVentrix Revivent TC procedure). , 2020, 2020, .		1
76	Serelaxin Improves Regional Myocardial Function in Experimental Heart Failure: An In Vivo Cardiac Magnetic Resonance Study. Journal of the American Heart Association, 2020, 9, e013702.	3.7	7
77	Out-of-Hospital Care of Heart Failure Patients During and After COVID-19 Pandemic: Time for Telemedicine?. Frontiers in Digital Health, 2020, 2, 593885.	2.8	1
78	Echocardiography and cardiovascular magnetic resonance based evaluation of myocardial strain and relationship with late gadolinium enhancement. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 46.	3.3	54
79	Clinical safety of the ProMRI implantable cardioverter-defibrillator systems during head and lower lumbar magnetic resonance imaging at 3 T: results of the ProMRI 3T ENHANCED Master study. Europace, 2019, 21, 1678-1685.	1.7	1
80	CMR Tissue Characterization in Patients with HFmrEF. Journal of Clinical Medicine, 2019, 8, 1877.	2.4	26
81	Range Variability in CMR Feature Tracking Multilayer Strain across Different Stages of Heart Failure. Scientific Reports, 2019, 9, 16478.	3.3	20
82	Effect of comprehensive initial training on the variability of left ventricular measures using fast-SENC cardiac magnetic resonance imaging. Scientific Reports, 2019, 9, 12223.	3.3	11
83	Assessment of Clobal Longitudinal and Circumferential Strain Using Computed Tomography Feature Tracking: Intra-Individual Comparison with CMR Feature Tracking and Myocardial Tagging in Patients with Severe Aortic Stenosis. Journal of Clinical Medicine, 2019, 8, 1423.	2.4	17
84	CMR Assessment of Myocyte Disarray in HCM. Journal of the American College of Cardiology, 2019, 74, 1847-1848.	2.8	0
85	Cardiovascular magnetic resonance imaging feature tracking: Impact of training on observer performance and reproducibility. PLoS ONE, 2019, 14, e0210127.	2.5	27
86	Myocardial Fibrosis Due to ExorbitantÂExercise or Just UndetectedÂPost-Inflammatory Stages?. JACC: Cardiovascular Imaging, 2019, 12, 381-382.	5.3	3
87	The Relationship Between EF and StrainÂPermits a More Accurate Assessment of LV Systolic Function. JACC: Cardiovascular Imaging, 2019, 12, 1893-1895.	5.3	21
88	Hemodynamic Changes During Physiological and Pharmacological Stress Testing in Healthy Subjects, Aortic Stenosis and Aortic Coarctation Patients–A Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine, 2019, 6, 43.	2.4	12
89	Strainâ€encoded magnetic resonance: a method for the assessment of myocardial deformation. ESC Heart Failure, 2019, 6, 584-602.	3.1	51
90	Strain-encoded cardiac magnetic resonance imaging: a new approach for fast estimation of left ventricular function. BMC Cardiovascular Disorders, 2019, 19, 52.	1.7	24

#	Article	IF	CITATIONS
91	Integration between volumetric change and strain for describing the global mechanical function of the left ventricle. Medical Engineering and Physics, 2019, 74, 65-72.	1.7	4
92	Less invasive ventricular reconstruction for ischaemic heart failure. European Journal of Heart Failure, 2019, 21, 1638-1650.	7.1	41
93	The Intraventricular Hemodynamic Forces Estimated Using Routine CMR Cine Images. JACC: Cardiovascular Imaging, 2019, 12, 377-379.	5.3	21
94	Native T1 and ECV of Noninfarcted Myocardium and Outcome in Patients WithÂCoronary ArteryÂDisease. Journal of the American College of Cardiology, 2018, 71, 766-778.	2.8	100
95	CMR stress testing in a patient with morbid obesity (BMI 58Âkg/m2) and suspected coronary artery disease. BMC Cardiovascular Disorders, 2018, 18, 47.	1.7	0
96	Renal sympathetic denervation restores aortic distensibility in patients with resistant hypertension: data from a multi-center trial. Clinical Research in Cardiology, 2018, 107, 642-652.	3.3	17
97	Fatty metaplasia quantification and impact on regional myocardial function as assessed by advanced cardiac MR imaging. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2018, 31, 75-85.	2.0	10
98	Left Ventricular Strain in Chemotherapy-Naive and Radiotherapy-Naive Patients With Cancer. Canadian Journal of Cardiology, 2018, 34, 281-287.	1.7	28
99	Reproducibility study on myocardial strain assessment using fast-SENC cardiac magnetic resonance imaging. Scientific Reports, 2018, 8, 14100.	3.3	60
100	Unusual case of ATTR amyloidosis with cardiac manifestation and situs inversus totalis. Clinical Research in Cardiology, 2017, 106, 311-316.	3.3	2
101	Cardiac MRI quantitative tissue characterization of right atrial mass using mDixon and parametric mapping. Clinical Research in Cardiology, 2017, 106, 840-845.	3.3	4
102	Left ventricular ejection fraction and presence of myocardial necrosis assessed by cardiac magnetic resonance imaging correctly risk stratify patients with stable coronary artery disease: a multi-center all-comers trial. Clinical Research in Cardiology, 2017, 106, 219-229.	3.3	19
103	Cardiovascular magnetic resonance feature tracking in small animals – a preliminary study on reproducibility and sample size calculation. BMC Medical Imaging, 2017, 17, 51.	2.7	13
104	Liquefaction necrosis of mitral annulus calcification. International Journal of Cardiology, 2016, 202, 59-61.	1.7	1
105	T1-Mapping and Outcome in NonischemicÂCardiomyopathy. JACC: Cardiovascular Imaging, 2016, 9, 40-50.	5.3	380
106	Effects of Renal Denervation on Renal Artery Function in Humans: Preliminary Study. PLoS ONE, 2016, 11, e0150662.	2.5	7
107	Highâ€dose dobutamine stress steadyâ€state free precession (SSFP) cine MRI at 3T with patient adaptive local radiofrequency (RF) shimming using dualâ€source RF transmission. Journal of Magnetic Resonance Imaging, 2015, 42, 746-753.	3.4	1
108	Prognostic value of non-invasive stress testing for coronary artery disease in obese patients. Expert Review of Cardiovascular Therapy, 2015, 13, 1325-1332.	1.5	3

#	Article	IF	CITATIONS
109	T1 Mapping in Discrimination of Hypertrophic Phenotypes: Hypertensive Heart Disease and Hypertrophic Cardiomyopathy. Circulation: Cardiovascular Imaging, 2015, 8, .	2.6	200
110	Coronary CT angiography for the detection of coronary artery stenosis in patients referred forÂtranscatheter aortic valve replacement. Journal of Cardiovascular Computed Tomography, 2015, 9, 31-41.	1.3	49
111	Incremental cost-effectiveness of dobutamine stress cardiac magnetic resonance imaging in patients at intermediate risk for coronary artery disease. Clinical Research in Cardiology, 2015, 104, 401-409.	3.3	30
112	Cardiac manifestations of Sneddon's syndrome. International Journal of Cardiology, 2015, 190, 275-276.	1.7	3
113	T1 Mapping for the Study of Cardiac Hypertrophy. Current Cardiovascular Imaging Reports, 2015, 8, 1.	0.6	1
114	Interventricular septum aneurysm: Two differently managed cases and association with bicuspid aortic valve. International Journal of Cardiology, 2015, 201, 438-440.	1.7	1
115	BMI does not influence the prediction of cardiac events using stress CMR. International Journal of Cardiology, 2015, 179, 31-33.	1.7	6
116	Ischemic Burden and Clinical Outcome: Is One â€~Culprit' Ischemic Segment by Dobutamine Stress Magnetic Resonance Predictive?. PLoS ONE, 2014, 9, e115182.	2.5	4
117	Potential Reduction of Interstitial Myocardial Fibrosis With Renal Denervation. Journal of the American Heart Association, 2014, 3, e001353.	3.7	41
118	Value of additional strain analysis with feature tracking in dobutamine stress cardiovascular magnetic resonance for detecting coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 72.	3.3	40
119	Contrast-enhanced cardiovascular magnetic resonance imaging of coronary vessel wall: state of art. Expert Review of Cardiovascular Therapy, 2014, 12, 255-263.	1.5	5
120	Comparison of Coronary Magnetic Resonance and Computed Tomography Angiography for Prediction of Cardiovascular Events. JACC: Cardiovascular Imaging, 2014, 7, 1063-1065.	5.3	7
121	Optical coherence tomography (OCT) to reveal vascular lesions after renal nerve ablation using a novel water-cooled, open-irrigated helical catheter approach. International Journal of Cardiology, 2014, 177, e172-e173.	1.7	3
122	Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. European Heart Journal, 2014, 35, 2224-2231.	2.2	140
123	Endomyocardial fibrosis in patients with confirmed Churg-Strauss syndrome. Rheumatology, 2014, 53, 84-84.	1.9	3
124	Cardiac magnetic resonance for prognostic assessment: present applications and future directions. Expert Review of Cardiovascular Therapy, 2014, 12, 771-782.	1.5	4
125	Comparison of acquisition time and dose for late gadolinium enhancement imaging at 3.0ÂT in patients with chronic myocardial infarction using Gd-BOPTA. European Radiology, 2014, 24, 2192-2200.	4.5	6
126	Comparison of myocardial tagging and feature tracking in patients with severe aortic stenosis. Journal of Heart Valve Disease, 2014, 23, 432-40.	0.5	14

#	Article	IF	CITATIONS
127	Coronary artery distensibility assessed by cardiovascular magnetic resonance imaging in patients with type 2 diabetes mellitus and healthy controls. Journal of Cardiovascular Magnetic Resonance, 2013, 15, M5.	3.3	0
128	A Bi-Center Cardiovascular Magnetic Resonance Prognosis Study Focusing on Dobutamine Wall Motion and Late Gadolinium Enhancement in 3,138 Consecutive Patients. Journal of the American College of Cardiology, 2013, 61, 2310-2312.	2.8	33
129	T1 and T2 mapping for tissue characterization of cardiac myxoma. International Journal of Cardiology, 2013, 169, e17-e20.	1.7	14
130	Magnetic Resonance Imaging of Cardiovascular Fibrosis and Inflammation: From Clinical Practice to Animal Studies and Back. BioMed Research International, 2013, 2013, 1-10.	1.9	23
131	Non-Invasive Detection of Coronary Endothelial Response to Sequential Handgrip Exercise in Coronary Artery Disease Patients and Healthy Adults. PLoS ONE, 2013, 8, e58047.	2.5	27
132	Renal denervation in fibromuscular dysplasia. BMJ Case Reports, 2013, 2013, bcr2013010204-bcr2013010204.	0.5	7
133	Emerging Concepts for Myocardial Late Gadolinium Enhancement MRI. Current Cardiology Reviews, 2013, 9, 185-190.	1.5	97
134	Oxygen Kinetics and Heart Rate Response during Early Recovery from Exercise in Patients with Heart Failure. Cardiology Research and Practice, 2012, 2012, 1-7.	1.1	10
135	Regional Coronary Endothelial Function Is Closely Related to Local Early Coronary Atherosclerosis in Patients With Mild Coronary Artery Disease. Circulation: Cardiovascular Imaging, 2012, 5, 341-348.	2.6	51
136	Visualization of Chronic Myocardial Infarction Using the Intravascular Contrast Agent MS-325 (Gadofosveset) in Patients. Scientific World Journal, The, 2012, 2012, 1-6.	2.1	9
137	Value of additional myocardial perfusion imaging during dobutamine stress magnetic resonance for the assessment of intermediate coronary artery disease. International Journal of Cardiovascular Imaging, 2012, 28, 89-97.	1.5	15
138	Delayed Contrast-Enhanced MRI of the Coronary Artery Wall in Takayasu Arteritis. PLoS ONE, 2012, 7, e50655.	2.5	29
139	A Prospective Study for Comparison of MR and CT Imaging for Detection of Coronary Artery Stenosis. JACC: Cardiovascular Imaging, 2011, 4, 50-61.	5.3	99
140	Long-Term Prognostic Value of Dobutamine Stress CMR. JACC: Cardiovascular Imaging, 2011, 4, 161-172.	5.3	62
141	Coronary Artery Distensibility Assessed by 3.0 Tesla Coronary Magnetic Resonance Imaging in Subjects With and Without Coronary Artery Disease. American Journal of Cardiology, 2011, 108, 491-497.	1.6	30
142	The role of dobutamine stress cardiovascular magnetic resonance in the clinical management of patients with suspected and known coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 2011, 13, 46.	3.3	20
143	Evaluation of contrast wash-in and peak enhancement in adenosine first pass perfusion CMR in patients post bypass surgery. Journal of Cardiovascular Magnetic Resonance, 2010, 12, 28.	3.3	20
144	Prognostic value of dobutamine cardiovascular magnetic resonance in patients with peripheral arterial disease. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	3.3	0

#	Article	IF	CITATIONS
145	Gadolinium Enhanced MR Coronary Vessel Wall Imaging at 3.0 Tesla. Cardiology Research and Practice, 2010, 2010, 1-9.	1.1	7
146	Noninvasive Visualization of Coronary Artery Endothelial Function in Healthy Subjects and in Patients With Coronary Artery Disease. Journal of the American College of Cardiology, 2010, 56, 1657-1665.	2.8	109
147	Strainâ€encoded MRI to evaluate normal left ventricular function and timing of contraction at 3.0 Tesla. Journal of Magnetic Resonance Imaging, 2009, 29, 799-808.	3.4	19
148	Quantification of myocardial perfusion using freeâ€breathing MRI and prospective slice tracking. Magnetic Resonance in Medicine, 2009, 61, 734-738.	3.0	27
149	Improved SNR efficiency in gradient echo coronary MRA with high temporal resolution using parallel imaging. Magnetic Resonance in Medicine, 2009, 62, 1211-1220.	3.0	9
150	Cardiac involvement of Echinococcus granulosus evaluated by multi-contrast CMR imaging. International Journal of Cardiology, 2009, 131, e59-e60.	1.7	15
151	Prognostic Value of Myocardial Infarct Size and Contractile Reserve Using Magnetic Resonance Imaging. Journal of the American College of Cardiology, 2009, 54, 1770-1777.	2.8	156
152	Magnetic Resonance Adenosine Perfusion Imaging in Patients After Coronary Artery Bypass Graft Surgery. JACC: Cardiovascular Imaging, 2009, 2, 437-445.	5.3	36
153	Local coronary endothelial dysfunction varies with the extent of coronary disease: a 3 T MRI study. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	3.3	0
154	Non-invasive assessment of coronary artery distensibility by 3.0 T cardiac MRI. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	3.3	0
155	Coronary MR Imaging: Lumen and Wall. Magnetic Resonance Imaging Clinics of North America, 2009, 17, 145-158.	1.1	2
156	Clinical Applications for Cardiovascular Magnetic Resonance Imaging at 3 Tesla. Current Cardiology Reviews, 2009, 5, 237-242.	1.5	13
157	Prognostic value of negative dobutamine-stress cardiac magnetic resonance imaging. Medical Science Monitor, 2009, 15, MT131-136.	1.1	6
158	Dobutamine stress cardiovascular magnetic resonance at 3 Tesla. Journal of Cardiovascular Magnetic Resonance, 2008, 10, 44.	3.3	23
159	Singleâ€breathhold fourâ€dimensional assessment of left ventricular volumes and function using kâ€ŧ BLAST after application of extracellular contrast agent at 3 Tesla. Journal of Magnetic Resonance Imaging, 2008, 27, 1028-1036.	3.4	14
160	Regional right ventricular function and timing of contraction in healthy volunteers evaluated by strainâ€encoded MRI. Journal of Magnetic Resonance Imaging, 2008, 28, 1379-1385.	3.4	29
161	Magnetic resonance coronary angiography with vasovistâ,"¢: in-vivo T 1 estimation to improve image quality of navigator and breath-hold techniques. European Radiology, 2008, 18, 103-109.	4.5	16
162	MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. European Radiology, 2008, 18, 1995-2005.	4.5	176

#	Article	IF	CITATIONS
163	Visualization of the Cardiac Venous System Using Cardiac Magnetic Resonance. American Journal of Cardiology, 2008, 101, 407-412.	1.6	72
164	Magnetic Resonance Cardiac Vein Imaging. JACC: Cardiovascular Imaging, 2008, 1, 729-738.	5.3	32
165	Papillary Fibroelastoma of the Tricuspid Valve Seen on Magnetic Resonance Imaging. Circulation, 2008, 117, e190-1.	1.6	17
166	Diagnostic Performance of Myocardial Perfusion MR at 3 T in Patients with Coronary Artery Disease. Radiology, 2008, 247, 57-63.	7.3	59
167	Coronary Magnetic Resonance Imaging. Current Pharmaceutical Design, 2008, 14, 1778-1786.	1.9	6
168	Vasovist $\hat{A}^{ extsf{@}}$ for Imaging Ischemic and Congenital Heart Disease. , 2008, , 159-168.		0
169	Prognostic Value of Cardiac Magnetic Resonance Stress Tests. Circulation, 2007, 115, 1769-1776.	1.6	494
170	Improved Quantitative Assessment of Left Ventricular Volumes Using TGrE Approach After Application of Extracellular Contrast Agent at 3 Tesla. Journal of Cardiovascular Magnetic Resonance, 2007, 9, 845-853.	3.3	17
171	Comparison of Myocardial Infarct Size Assessed With Contrast-Enhanced Magnetic Resonance Imaging and Left Ventricular Function and Volumes to Predict Mortality in Patients With Healed Myocardial Infarction. American Journal of Cardiology, 2007, 100, 930-936.	1.6	568
172	Cardiovascular MRI at 3 T. European Radiology, Supplement, 2007, 17, 42-47.	1.4	8
173	Whole-heart coronary magnetic resonance angiography with MS-325 (Gadofosveset). Medical Science Monitor, 2007, 13, CR469-474.	1.1	25
174	ARVC with left ventricular involvement in a young woman. European Heart Journal, 2006, 27, 2510-2510.	2.2	1
175	Anatomical and Functional Evaluation of Myocardial Bridging on the Left Anterior Descending Artery by Cardiovascular Magnetic Resonance Imaging. Journal of Cardiovascular Magnetic Resonance, 2006, 8, 755-757.	3.3	9
176	Primary Fibrosarcoma of the Liver Infiltrating the Right Atrium of the Heart. International Journal of Cardiovascular Imaging, 2005, 21, 655-658.	1.5	9
177	Potential Intrinsic Error of Noninvasive Coronary Angiography. Journal of Cardiovascular Magnetic Resonance, 2005, 7, 401-407.	3.3	8
178	Cardiac Magnetic Resonance Reveals Incipient Cardiomyopathy Traits in Adult Patients with Phenylketonuria. SSRN Electronic Journal, 0, , .	0.4	0
179	Kardiale Magnetresonanztomographie: Ist Gadolinium mit Risiken für die Patienten behaftet?. , 0, , .		0
180	Kardiale Magnetresonanztomografie: Referenz für die myokardiale Beteiligung bei COVID-19. , 0, , .		0

11