Antxon MartÃ-nez de Ilarduya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1487732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzymatic recycling of polymacrolactones. Polymer Chemistry, 2022, 13, 1586-1595.	1.9	7
2	Development of fluorine-free waterborne textile finishing agents for anti-stain and solvent-water separation based on low surface energy (co)polymers. Progress in Organic Coatings, 2021, 150, 105968.	1.9	7
3	Biocompatible graft copolymers from bacterial poly(Î ³ -glutamic acid) and poly(lactic acid). Polymer Chemistry, 2021, 12, 3784-3793.	1.9	18
4	Organocatalyzed closed-loop chemical recycling of thermo-compressed films of poly(ethylene) Tj ETQq0 0 0 rgB	T /Qverlock	10 Tf 50 62
5	Biobased Waterborne Polyurethane-Urea/SWCNT Nanocomposites for Hydrophobic and Electrically Conductive Textile Coatings. Polymers, 2021, 13, 1624.	2.0	7
6	Synthesis and characterization of poly(butylene terephthalate) copolyesters derived from threitol. Polymers and Polymer Composites, 2021, 29, S817-S825.	1.0	2
7	Synthesis, Structure, Crystallization and Mechanical Properties of Isodimorphic PBS-ran-PCL Copolyesters. Polymers, 2021, 13, 2263.	2.0	15
8	A Biodegradable Copolyester, Poly(butylene succinate-co-Îμ-caprolactone), as a High Efficiency Matrix Former for Controlled Release of Drugs. Pharmaceutics, 2021, 13, 1057.	2.0	2
9	Poly(butylene succinate-co-ε-caprolactone) Copolyesters: Enzymatic Synthesis in Bulk and Thermal Properties. Polymers, 2021, 13, 2679.	2.0	7
10	Polypeptide-based materials prepared by ring-opening polymerisation of anionic-based α-amino acid N-carboxyanhydrides: A platform for delivery of bioactive-compounds. Reactive and Functional Polymers, 2021, , 105040.	2.0	2
11	Biobased Waterborne Polyurethane-Ureas Modified with POSS-OH for Fluorine-Free Hydrophobic Textile Coatings. Polymers, 2021, 13, 3526.	2.0	5
12	ROP and crystallization behaviour of partially renewable triblock aromatic-aliphatic copolymers derived from L-lactide. European Polymer Journal, 2020, 122, 109321.	2.6	4
13	Controlling the Isothermal Crystallization of Isodimorphic PBS-ran-PCL Random Copolymers by Varying Composition and Supercooling. Polymers, 2020, 12, 17.	2.0	26
14	"Clickable―bacterial poly(γ-glutamic acid). Polymer Chemistry, 2020, 11, 5582-5589.	1.9	31
15	Copolymacrolactones Grafted with l-Glutamic Acid: Synthesis, Structure, and Nanocarrier Properties. Polymers, 2020, 12, 995.	2.0	6
16	Ring opening polymerization of macrocyclic oligoesters derived from renewable sources. Polymer Chemistry, 2020, 11, 4850-4860.	1.9	20
17	Poly(amino acid)-grafted polymacrolactones. Synthesis, self-assembling and ionic coupling properties. Reactive and Functional Polymers, 2019, 143, 104316.	2.0	6
18	Block and Graft Copolymers Made of 16â€Membered Macrolactones and I â€Alanine: A Comparative Study. Macromolecular Chemistry and Physics, 2019, 220, 1900214.	1.1	4

#	Article	IF	CITATIONS
19	pH-Responsive diblock copolymers made of ï‰-pentadecalactone and ionically charged α-amino acids. European Polymer Journal, 2019, 120, 109244.	2.6	3
20	Poly (α-Dodecyl γ-Glutamate) (PAAG-12) and Polylactic Acid Films Charged with α-Tocopherol and Their Antioxidant Capacity in Food Models. Antioxidants, 2019, 8, 284.	2.2	9
21	Synthesis and properties of diblock copolymers of ω-pentadecalactone and α-amino acids. European Polymer Journal, 2019, 116, 169-179.	2.6	11
22	Synthesis of Aromatic–Aliphatic Polyesters by Enzymatic Ring Opening Polymerization of Cyclic Oligoesters and their Cyclodepolymerization for a Circular Economy. ACS Applied Polymer Materials, 2019, 1, 321-325.	2.0	16
23	Isomannide-Containing Poly(butylene 2,5-furandicarboxylate) Copolyesters via Ring Opening Polymerization. Macromolecules, 2018, 51, 3340-3350.	2.2	38
24	Hydroxyl-functionalized amphiphilic triblock copolyesters made of tartaric and lactic acids: Synthesis and nanoparticle formation. Reactive and Functional Polymers, 2018, 126, 52-62.	2.0	7
25	Blocky poly(É›â€caprolactoneâ€ <i>co</i> â€butylene 2,5â€furandicarboxylate) copolyesters via enzymatic ring opening polymerization. Journal of Polymer Science Part A, 2018, 56, 290-299.	2.5	39
26	Tuning the Thermal Properties and Morphology of Isodimorphic Poly[(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 T Thermal History. Macromolecules, 2018, 51, 9589-9601.	f 50 467 1 2.2	d (succinate 32
27	Metal-free catalyzed ring-opening polymerization and block copolymerization of ω-pentadecalactone using amino-ended initiators. European Polymer Journal, 2018, 108, 380-389.	2.6	9
28	Comblike Ionic Complexes of Hyaluronic Acid and Alkanoylcholine Surfactants as a Platform for Drug Delivery Systems. Biomacromolecules, 2018, 19, 3669-3681.	2.6	6
29	Partially Renewable Poly(butylene 2,5-furandicarboxylate-co-isophthalate) Copolyesters Obtained by ROP. Polymers, 2018, 10, 483.	2.0	12
30	Hydrolytic degradation of d-mannitol-based polyurethanes. Polymer Degradation and Stability, 2018, 153, 262-271.	2.7	13
31	Crystalline structure and thermotropic behavior of alkyltrimethylphosphonium amphiphiles. Physical Chemistry Chemical Physics, 2017, 19, 4370-4382.	1.3	7
32	Poly(butylene succinate-ran-ε-caprolactone) copolyesters: Enzymatic synthesis and crystalline isodimorphic character. European Polymer Journal, 2017, 95, 795-808.	2.6	41
33	Fully bio-based aromatic–aliphatic copolyesters: poly(butylene furandicarboxylate-co-succinate)s obtained by ring opening polymerization. Polymer Chemistry, 2017, 8, 748-760.	1.9	59
34	Sugar-based bicyclic monomers for aliphatic polyesters: a comparative appraisal of acetalized alditols and isosorbide. Designed Monomers and Polymers, 2017, 20, 157-166.	0.7	22
35	lonic complexes of poly(γ-glutamic acid) with alkyltrimethylphosphonium surfactants. Polymer, 2017, 116, 43-54.	1.8	6
36	A green strategy for the synthesis of poly(ethylene succinate) and its copolyesters via enzymatic ring opening polymerization. European Polymer Journal, 2017, 95, 514-519.	2.6	18

#	Article	IF	CITATIONS
37	Modulating the Tg of Poly(alkylene succinate)s by Inserting Bio-Based Aromatic Units via Ring-Opening Copolymerization. Polymers, 2017, 9, 701.	2.0	7
38	Triblock copolyesters derived from lactic acid and glucose: Synthesis, nanoparticle formation and simulation. European Polymer Journal, 2017, 92, 1-12.	2.6	8
39	Poly(butylene succinate) ionomers and their use as compatibilizers in nanocomposites. Polymer Composites, 2016, 37, 2603-2610.	2.3	8
40	Modification of microbial polymers by thiol-ene click reaction: Nanoparticle formation and drug encapsulation. Reactive and Functional Polymers, 2016, 106, 143-152.	2.0	2
41	Isohexide and Sorbitol-Derived, Enzymatically Synthesized Renewable Polyesters with Enhanced <i>T</i> _g . Biomacromolecules, 2016, 17, 3404-3416.	2.6	28
42	Sustainable Aromatic Copolyesters via Ring Opening Polymerization: Poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 4965-4973.	10 Tf 50 5 3.2	47 Td (2,5-fi 55
43	Green and selective polycondensation methods toward linear sorbitolâ€based polyesters: enzymatic versus organic and metalâ€based catalysis. ChemSusChem, 2016, 9, 2250-2260.	3.6	21
44	Dielectric Relaxations in Poly(glycidyl phenyl ether): Effects of Microstructure and Cyclic Topology. Macromolecules, 2016, 49, 1060-1069.	2.2	22
45	Poly(alkylene 2,5-furandicarboxylate)s (PEF and PBF) by ring opening polymerization. Polymer, 2016, 87, 148-158.	1.8	111
46	Cationic poly(butylene succinate) copolyesters. European Polymer Journal, 2016, 75, 329-342.	2.6	23
47	Poly(butylene succinate) Ionomers with Enhanced Hydrodegradability. Polymers, 2015, 7, 1232-1247.	2.0	23
48	Bio-based PBS copolyesters derived from a bicyclic <scp>d</scp> -glucitol. RSC Advances, 2015, 5, 46395-46404.	1.7	27
49	Copolyesters Made from 1,4-Butanediol, Sebacic Acid, and <scp>d</scp> -Glucose by Melt and Enzymatic Polycondensation. Biomacromolecules, 2015, 16, 868-879.	2.6	56
50	Chemical Structure and Microstructure of Poly(alkylene terephthalate)s, their Copolyesters, and their Blends as Studied by NMR. Macromolecular Chemistry and Physics, 2014, 215, 2138-2160.	1.1	35
51	Modification of properties of poly(butylene succinate) by copolymerization with tartaric acid-based monomers. European Polymer Journal, 2014, 61, 263-273.	2.6	38
52	Partially renewable copolyesters prepared from acetalized <scp>d</scp> â€glucitol by solidâ€state modification of poly(butylene terephthalate). Journal of Polymer Science Part A, 2014, 52, 164-177.	2.5	17
53	Bio-based poly(ethylene terephthalate) copolyesters made from cyclic monomers derived from tartaric acid. Polymer, 2014, 55, 2294-2304.	1.8	33
54	Complexes of polyglutamic acid and long-chain alkanoylcholines: Nanoparticle formation and drug release. International Journal of Biological Macromolecules, 2014, 66, 346-353.	3.6	9

#	Article	IF	CITATIONS
55	Carbohydrate-based PBT copolyesters from a cyclic diol derived from naturally occurring tartaric acid: a comparative study regarding melt polycondensation and solid-state modification. Green Chemistry, 2014, 16, 1789-1798.	4.6	33
56	Renewable terephthalate polyesters from carbohydrate-based bicyclic monomers. Green Chemistry, 2014, 16, 1716-1739.	4.6	99
57	Bio-based PBT copolyesters derived fromd-glucose: influence of composition on properties. Polymer Chemistry, 2014, 5, 3190-3202.	1.9	54
58	Thermal behavior of long-chain alkanoylcholine soaps. RSC Advances, 2014, 4, 10738-10750.	1.7	6
59	Nanoparticles of Esterified Polymalic Acid for Controlled Anticancer Drug Release. Macromolecular Bioscience, 2014, 14, 1325-1336.	2.1	8
60	Poly(β,L-malic acid)/Doxorubicin ionic complex: A pH-dependent delivery system. Reactive and Functional Polymers, 2014, 81, 45-53.	2.0	25
61	Biodegradable Copolyesters of Poly(hexamethylene terephthalate) Containing Bicyclic 2,4:3,5â€Diâ€ <i>O</i> â€methyleneâ€ <scp>d</scp> â€Glucarate Units. Macromolecular Chemistry and Physics, 215, 2048-2059.	201.4,	8
62	The structure of poly(γ-glutamic acid)/nanoclay hybrids compatibilized by alkylammonium surfactants. European Polymer Journal, 2013, 49, 2596-2609.	2.6	3
63	Bio-based poly(hexamethylene terephthalate) copolyesters containing cyclic acetalized tartrate units. Polymer, 2013, 54, 1573-1582.	1.8	19
64	Comblike Ionic Complexes of Poly(γ-glutamic acid) and Alkanoylcholines Derived from Fatty Acids. Macromolecules, 2013, 46, 1607-1617.	2.2	11
65	Comb-like ionic complexes of hyaluronic acid with alkyltrimethylammonium surfactants. Carbohydrate Polymers, 2013, 92, 691-696.	5.1	14
66	High Tg Bio-Based Aliphatic Polyesters from Bicyclic <scp>d</scp> -Mannitol. Biomacromolecules, 2013, 14, 781-793.	2.6	104
67	d-Glucose-derived PET copolyesters with enhanced Tg. Polymer Chemistry, 2013, 4, 3524.	1.9	55
68	Solid-State Modification of PBT with Cyclic Acetalized Galactitol and <scp>d</scp> -Mannitol: Influence of Composition and Chemical Microstructure on Thermal Properties. Macromolecules, 2013, 46, 4335-4345.	2.2	50
69	PET copolyesters made from a <scp>d</scp> -mannitol-derived bicyclic diol. Polymer Chemistry, 2013, 4, 282-289.	1.9	61
70	lsocyanate toughened pCBT: Reactive blending and tensile properties. EXPRESS Polymer Letters, 2013, 7, 172-185.	1.1	12
71	Sulfonated poly(hexamethylene terephthalate) copolyesters: Enhanced thermal and mechanical properties. Journal of Applied Polymer Science, 2013, 129, 3527-3535.	1.3	11
72	Bio-based aromatic copolyesters made from 1,6-hexanediol and bicyclic diacetalized d-glucitol. Polymer Chemistry, 2012, 3, 2092.	1.9	40

#	Article	IF	CITATIONS
73	Bio-based poly(butylene terephthalate) copolyesters containing bicyclic diacetalized galactitol and galactaric acid: Influence of composition on properties. Polymer, 2012, 53, 3432-3445.	1.8	49
74	Poly(ethylene terephthalate) terpolyesters containing 1,4-cyclohexanedimethanol and isosorbide. High Performance Polymers, 2012, 24, 24-30.	0.8	18
75	Bio-Based Aromatic Polyesters from a Novel Bicyclic Diol Derived from <scp>d</scp> -Mannitol. Macromolecules, 2012, 45, 8257-8266.	2.2	103
76	Poly(γâ€glutamic acid) esters with reactive functional groups suitable for orthogonal conjugation strategies. Journal of Polymer Science Part A, 2012, 50, 4790-4799.	2.5	42
77	Carbohydrateâ€based copolyesters made from bicyclic acetalized galactaric acid. Journal of Polymer Science Part A, 2012, 50, 1591-1604.	2.5	45
78	Biodegradable aromatic copolyesters made from bicyclic acetalized galactaric acid. Journal of Polymer Science Part A, 2012, 50, 3393-3406.	2.5	30
79	Modification of Microbial Polymalic Acid With Hydrophobic Amino Acids for Drugâ€Releasing Nanoparticles. Macromolecular Chemistry and Physics, 2012, 213, 1623-1631.	1.1	18
80	Toughening of in situ polymerized cyclic butylene terephthalate by chain extension with a bifunctional epoxy resin. European Polymer Journal, 2012, 48, 163-171.	2.6	41
81	Carbohydrateâ€based polyurethanes: A comparative study of polymers made from isosorbide and 1,4â€butanediol. Journal of Applied Polymer Science, 2012, 123, 986-994.	1.3	50
82	Carbohydrate-Based Polyesters Made from Bicyclic Acetalized Galactaric Acid. Biomacromolecules, 2011, 12, 2642-2652.	2.6	95
83	Polyterephthalates made from Ethylene glycol, 1,4â€cyclohexanedimethanol, and isosorbide. Journal of Polymer Science Part A, 2011, 49, 2252-2260.	2.5	55
84	Poly(methyl malate) Nanoparticles: Formation, Degradation, and Encapsulation of Anticancer Drugs. Macromolecular Bioscience, 2011, 11, 1370-1377.	2.1	19
85	Comb-like ionic complexes of pectinic and alginic acids with alkyltrimethylammonium surfactants. Carbohydrate Polymers, 2011, 86, 484-490.	5.1	8
86	Poly(ethylene terephthalateâ€ <i>co</i> â€isophthalate) copolyesters obtained from ethylene terephthalate and isophthalate oligomers. Journal of Applied Polymer Science, 2010, 115, 1823-1830.	1.3	11
87	Poly(hexamethylene terephthalate)–layered silicate nanocomposites. European Polymer Journal, 2010, 46, 156-164.	2.6	15
88	Poly(hexamethylene terephthalate-co-caprolactone) copolymers: Influence of cycle size on ring-opening polymerization. European Polymer Journal, 2010, 46, 792-803.	2.6	12
89	Synthesis and properties of poly(hexamethylene terephthalate)/multiwall carbon nanotubes nanocomposites. Composites Science and Technology, 2010, 70, 789-796.	3.8	26
90	Ionic Complexes of Polyacids and Cationic Surfactants. Macromolecular Symposia, 2010, 296, 265-271.	0.4	3

#	Article	IF	CITATIONS
91	Hydrolyzable Aromatic Copolyesters of <i>p</i> -Dioxanone. Biomacromolecules, 2010, 11, 2512-2520.	2.6	23
92	Sequence Analysis of Polyether-Based Thermoplastic Polyurethane Elastomers by ¹³ C NMR. Macromolecules, 2010, 43, 3990-3993.	2.2	14
93	Nanoparticles Made of Microbial Poly(γ-glutamate)s for Encapsulation and Delivery of Drugs and Proteins. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 1065-1079.	1.9	27
94	Butylene copolyesters based on aldaric and terephthalic acids. Synthesis and characterization. Journal of Polymer Science Part A, 2009, 47, 1168-1177.	2.5	13
95	Linear polyurethanes made from naturally occurring tartaric acid. Journal of Polymer Science Part A, 2009, 47, 2391-2407.	2.5	13
96	Poly(ethyleneâ€ <i>co</i> â€1,4â€cyclohexylenedimethylene terephthalate) copolyesters obtained by ring opening polymerization. Journal of Polymer Science Part A, 2009, 47, 5954-5966.	2.5	24
97	Polyesters analogous to PET and PBT based on <i>O</i> â€benzyl ethers of xylitol and <scp>L</scp> â€arabinitol. Journal of Polymer Science Part A, 2008, 46, 5167-5179.	2.5	18
98	Rheological Features and Flowâ€Induced Crystallization of Branched Poly[ethyleneâ€ <i>co</i> â€(1,4â€cyclohexanedimethylene terephthalate)] Copolyesters. Macromolecular Materials and Engineering, 2008, 293, 836-846.	1.7	9
99	Synthesis, Degradability, and Drug Releasing Properties of Methyl Esters of Fungal Poly(<i>β</i> , <scp>L</scp> â€malic acid). Macromolecular Bioscience, 2008, 8, 540-550.	2.1	31
100	Poly(hexamethylene terephthalate-co-caprolactone) Copolyesters Obtained by Ring-Opening Polymerization. Macromolecules, 2008, 41, 4136-4146.	2.2	36
101	Spectroscopic Evidence for Stereocomplex Formation by Enantiomeric Polyamides Derived from Tartaric Acid. Macromolecules, 2008, 41, 3734-3738.	2.2	17
102	Ionic Complexes of Biotechnological Polyacids with Cationic Surfactants. Macromolecular Symposia, 2008, 273, 85-94.	0.4	2
103	Ionic Complexes of Biosynthetic Poly(malic acid) and Poly(glutamic acid) as Prospective Drug-Delivery Systems. Macromolecular Bioscience, 2007, 7, 897-906.	2.1	15
104	Styrene/(substituted styrene) copolymerization by Ph2Zn–metallocene–MAO systems: Synthesis and characterization of poly(styrene-co-p-hydroxystyrene) copolymers. Polymer, 2007, 48, 4646-4652.	1.8	6
105	Crystallization and crystal structure of poly(ester amide)s derived fromL-tartaric acid. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 116-125.	2.4	4
106	Comblike Complexes of Poly(itaconic acid) and Poly(mono methyl itaconate) and Alkyltrimethylamonium Cationic Surfactants. Polymer Bulletin, 2007, 58, 529-539.	1.7	3
107	Thermal decomposition of microbial poly(γ-glutamic acid) and poly(γ-glutamate)s. Polymer Degradation and Stability, 2007, 92, 1916-1924.	2.7	29
108	Nanostructurated Complexes of Poly(β,l-malate) and Cationic Surfactants: Synthesis, Characterization and Structural Aspects. Biomacromolecules, 2006, 7, 161-170.	2.6	17

#	Article	IF	CITATIONS
109	Poly(butylene terephthalate) Copolyesters Derived froml-Arabinitol and Xylitol. Macromolecules, 2006, 39, 1410-1416.	2.2	32
110	Thermal Decomposition of Fungal Poly(β,l-malic acid) and Poly(β,l-malate)s. Biomacromolecules, 2006, 7, 3283-3290.	2.6	27
111	Comblike Complexes of Poly(aspartic acid) and Alkyltrimethylamonium Cationic Surfactants. Macromolecular Symposia, 2006, 245-246, 266-275.	0.4	3
112	Homo- and copolymerization of styrene and 1-alkene using Ph2Zn–Et(Ind)2ZrCl2–MAO initiator systems. European Polymer Journal, 2005, 41, 1013-1019.	2.6	17
113	Poly(ethylene terephthalate) copolymers containing 1,4-cyclohexane dicarboxylate units. European Polymer Journal, 2005, 41, 1493-1501.	2.6	34
114	Synthesis and secondary structure of oligo(α-isobutyl β,L-aspartate)s. Biopolymers, 2005, 77, 121-127.	1.2	3
115	Comb-Like Ionic Complexes of Cationic Surfactants with Bacterial Poly(γ -glutamic acid) of Racemic Composition. Macromolecular Bioscience, 2005, 5, 30-38.	2.1	26
116	Poly(butylene terephthalate-co-5-tert-butyl isophthalate) copolyesters: Synthesis, characterization, and properties. Journal of Polymer Science Part A, 2005, 43, 92-100.	2.5	9
117	Poly(ethylene isophthalate)s: effect of the tert-butyl substituent on structure and properties. Polymer, 2004, 45, 5005-5012.	1.8	9
118	Linear polyamides fromL-malic acid and alkanediamines. Journal of Polymer Science Part A, 2004, 42, 1566-1575.	2.5	12
119	Poly(ester amide)s Derived froml-Malic Acid. Macromolecules, 2004, 37, 2067-2075.	2.2	16
120	Comblike Complexes of Bacterial Poly(γ,d-glutamic acid) and Cationic Surfactants. Biomacromolecules, 2004, 5, 144-152.	2.6	33
121	Preparation and hydrolytic degradation of sulfonated poly(ethylene terephthalate) copolymers. Polymer, 2003, 44, 7281-7289.	1.8	26
122	Copoly(γ,dl-glutamate)s containing short and long linear alkyl side chains. Polymer, 2003, 44, 7557-7564.	1.8	13
123	Microstructure and crystallization of melt-mixed poly(ethylene terephthalate)/poly(ethylene) Tj ETQq1 1 0.7843	14 rgBT /0	Overlock 10 Tf
124	Hydrolytic degradation of poly(ethylene terephthalate) copolymers containing nitrated units. Polymer Degradation and Stability, 2003, 79, 353-358.	2.7	13
125	Hairy-rod random copoly(l²,l-aspartate)s containing alkyl and benzyl side groups. Polymer, 2003, 44, 1-6.	1.8	29
126	New comb-like poly(n-alkyl itaconate)s with crystalizable side chains. Polymer, 2003, 44, 4969-4979.	1.8	63

#	Article	IF	CITATIONS
127	Poly(ethylene terephthalate) terpolyesters containing isophthalic and 5-tert-butylisophthalic units. Journal of Polymer Science Part A, 2003, 41, 124-134.	2.5	6
128	Comblike Alkyl Esters of Biosynthetic Poly(γ-glutamic acid). 2. Supramolecular Structure and Thermal Transitions. Macromolecules, 2003, 36, 7567-7576.	2.2	29
129	Sequence Analysis of Poly(ethylene terephthalate) Terpolyesters Containing Isophthalic andtert-Butylisophthalic Units by13C NMR. Macromolecules, 2002, 35, 314-317.	2.2	11
130	Poly(α-alkyl γ-glutamate)s of Microbial Origin. 2. On the Microstructure and Crystal Structure of Poly(α-ethyl γ-glutamate)s. Biomacromolecules, 2002, 3, 1078-1086.	2.6	10
131	Synthesis of Poly(-alkyl ,L-aspartate)s by Transesterification. Macromolecular Rapid Communications, 2002, 23, 849-852.	2.0	0
132	Structural characterization and thermal properties of poly(ethylene terephthalate) copolymers containing 2-butyl-2-ethyl-1,3-propanediol. Journal of Applied Polymer Science, 2002, 86, 1077-1086.	1.3	6
133	Synthesis, characterization and thermal behavior of Poly(methyl- n -octadecyl itaconate) a comb-like polymer with crystallizable side chain. Polymer Bulletin, 2002, 48, 59-66.	1.7	15
134	Poly(ethylene terephthalate) copolymers containing 5-nitroisophthalic units. III. Methanolytic degradation. Journal of Polymer Science Part A, 2002, 40, 76-87.	2.5	6
135	Poly(ethylene terephthalate) copolymers containing nitroterephthalic units. III. Methanolytic degradation. Journal of Polymer Science Part A, 2002, 40, 2276-2285.	2.5	11
136	Poly(ethylene terephthalate) copolymers containing nitroterephthalic units. II. Crystallization and conformational studies. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2759-2771.	2.4	4
137	Comblike Alkyl Esters of Biosynthetic Poly(\hat{I}^3 -glutamic acid). 1. Synthesis and Characterization. Macromolecules, 2001, 34, 7868-7875.	2.2	37
138	Poly(α-alkyl γ-glutamate)s of microbial origin: I. Ester derivatization of poly(γ-glutamic acid) and thermal degradation. Polymer, 2001, 42, 9319-9327.	1.8	19
139	Poly(ethylene terephthalate) copolymers containing 5-tert-butyl isophthalic units. Journal of Polymer Science Part A, 2001, 39, 1994-2004.	2.5	25
140	Poly(ethylene terephthalate) copolyesters derived from (2S,3S)-2,3-dimethoxy-1,4-butanediol. Journal of Polymer Science Part A, 2001, 39, 3250-3262.	2.5	27
141	Poly(ethylene terephthalate) copolymers containing 5-nitroisophthalic units. II. Crystallization studies. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1553-1564.	2.4	11
142	Copolymerization of styrene by diphenylzinc-additive systems I. Copolymerization of styrene/p-tert-butylstyrene by Ph2Zn–metallocene–MAO systems. European Polymer Journal, 2001, 37, 1001-1006.	2.6	17
143	Miscibility windows of poly(vinyl methyl ether) with modified phenoxy resin. European Polymer Journal, 2001, 37, 1943-1950.	2.6	3
144	Poly(ester amide)s derived fromL-tartaric acid and amino alcohols. II. Aregic polymers. Journal of Polymer Science Part A, 2000, 38, 2687-2696.	2.5	14

#	Article	IF	CITATIONS
145	Poly(ethylene terephthalate) copolymers containing nitroterephthalic units. I. Synthesis and characterization. Journal of Polymer Science Part A, 2000, 38, 3761-3770.	2.5	22
146	Optically active polyamides containing 1,3-dioxolane cycles in the backbone. Polymer, 2000, 41, 4869-4879.	1.8	16
147	Synthesis and structure of random and block copoly(β, I -aspartate)s containing short and long alkyl side chains. Polymer, 2000, 41, 8475-8486.	1.8	8
148	Sequence Analysis of Poly(ethylene terephthalate-co-isophthalate) Copolymers by 13C NMR. Macromolecules, 2000, 33, 4596-4598.	2.2	30
149	A d.s.c. study of crystallization behaviour of poly(α-n-alkyl β-l-aspartate)s. Polymer, 1999, 40, 801-805.	1.8	2
150	Synthesis of heterotelechelic poly(ethylene glycol)s and their characterization by MALDI-TOF-MS. Macromolecular Chemistry and Physics, 1999, 200, 1363-1373.	1.1	20
151	Helical Poly(β-peptides):  The Helixâ^'Coil Transition of Poly(α-alkyl-β-aspartate)s in Solution. Macromolecules, 1999, 32, 3257-3263.	2.2	31
152	Hydrolytic Degradation of Poly(ester amide)s Made from Tartaric and Succinic Acids:  Influence of the Chemical Structure and Microstructure on Degradation Rate. Macromolecules, 1999, 32, 8033-8040.	2.2	48
153	Stereoregular polyamides entirely based on tartaric acid. , 1999, 37, 983.		1
154	Conformational Analysis of (S)-4-(Cyclohexoxycarbonyl)-2-azetidinone. Journal of Physical Chemistry A, 1997, 101, 4208-4214.	1.1	7
155	Conformation and Crystal Structure of Poly(α-cycloalkyl-β-l-aspartate)s. Journal of Physical Chemistry A, 1997, 101, 4215-4223.	1.1	17
156	Thermal behavior of poly(α-n-alkyl β-L-aspartate)s. Journal of Theoretical Biology, 1997, 49, 693-702.	0.8	2
157	Degradable poly(ester amide)s based on l-tartaric acid. Polymer, 1997, 38, 4935-4944.	1.8	52
158	Stereocopolyamides Derived from 2,3-Di-O-Methyl-d- and -l-Tartaric Acids and Hexamethylenediamine. 2. Influence of the Configurational Composition on the Crystal Structure of Optically Compensated Systems. Macromolecules, 1996, 29, 8413-8424.	2.2	27
159	Stereocopolyamides Derived from 2,3-Di-O-methyl-d- and -l-tartaric Acids and Hexamethylenediamine. 1. Synthesis, Characterization, and Compared Properties. Macromolecules, 1996, 29, 8404-8412.	2.2	28
160	Poly(?-isobutyl-?-D,L-aspartate)s: Polymerization effects on configuration and crystal structure of the stereocopolymers. , 1996, 34, 1959-1968.		4
161	Analysis of the conformational preferences of (4R,5R)-4,5-bis(alkylcarbamoyl)-1,3-dioxolanes. Tetrahedron, 1996, 52, 8275-8286.	1.0	8
162	Poly(α-butyl β-L-aspartate): A second alkoxycarbonyl nylon-3 derivative in helical conformation. Macromolecular Chemistry and Physics, 1995, 196, 253-268.	1.1	26

#	Article	IF	CITATIONS
163	Structure and Thermal Properties of New Comblike Polyamides: Helical Poly(.betaL-aspartate)s Containing Linear Alkyl Side Chains. Macromolecules, 1995, 28, 5535-5546.	2.2	66
164	Influence of the chemical modification of phenoxy resin on its miscibility with poly(2-vinyl pyridine). Polymer International, 1994, 33, 393-398.	1.6	5
165	Poly(β-L-aspartate)s Containing Ethylene Oxide Units in the Side Chain: Synthesis and Structural Studies. Polymer Journal, 1994, 26, 694-704.	1.3	9
166	Phenoxy blends: an approach to the miscibility by FTi.r. and chemical modification of the interacting sites. Polymer, 1993, 34, 38-42.	1.8	29
167	Chemical modifications of phenoxy resin. Synthesis and1H NMR study of model compounds. Magnetic Resonance in Chemistry, 1991, 29, 1005-1011.	1.1	1
168	Polyesters Based on Cyclohexanedimethanol. , 0, , 181-220.		5
169	PEF polimeroaren birziklapen zirkularra. , 0, , .		0