
Akira Mochizuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1487535/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative study on water structures of poly(tetrahydrofurfuryl acrylate) and poly(2-hydroxyethyl) Tj ETQq1 Edition, 2021, 32, 1754-1769.	1 0.784314 1.9	rgBT /Overic 2
2	Carbon radicals generated by solid polymers: Electron spin resonance spectroscopy for detection of species in water. Journal of Applied Polymer Science, 2020, 137, 48604.	1.3	2
3	Water structure of poly(2-methoxyethyl acrylate) observed by nuclear magnetic resonance spectroscopy. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1024-1040.	1.9	5
4	Biocompatibility and adhesive strength properties of poly(methyl acrylate-co-acrylic acid) as a function of acrylic acid content. Journal of Bioactive and Compatible Polymers, 2019, 34, 479-493.	0.8	4
5	Effect of silyl group of methacrylate copolymer on its biocompatibility and ability to give a corrosion resistance to magnesium alloy. Journal of Advanced Science, 2019, 31, n/a.	0.1	0
6	Effect of methoxyethyl and methyl ester groups on platelet compatibility of polymers. Journal of Bioactive and Compatible Polymers, 2018, 33, 498-515.	0.8	6
7	Platelet compatibility of magnesium alloys. Materials Science and Engineering C, 2017, 78, 1119-1124.	3.8	8
8	Effect of end segment on physicochemical properties and platelet compatibility of poly(propylene) Tj ETQq0 0 1572-1587.	0 rgBT /Ove 1.9	rlock 10 Tf 5 3
9	Relationship between water structure and properties of poly(methyl methacrylate-b-2-hydroxyethyl) Tj ETQq1 I	1 0.784314 1.9	rgBT /Overlo
10	Cytocompatibility of magnesium and AZ31 alloy with three types of cell lines using a direct in vitro method. Journal of Materials Science: Materials in Medicine, 2016, 27, 145.	1.7	15
11	Study of the water structure in poly(methyl methacrylate-block-2-hydroxyethyl methacrylate) and its relationship to platelet adhesion on the copolymer surface. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 750-765.	1.9	5
12	Study on the blood compatibility and biodegradation properties of magnesium alloys. Materials Science and Engineering C, 2015, 47, 204-210.	3.8	25
13	Water structure in poly(2â€hydroxyethyl methacrylate): Effect of molecular weight of poly(2â€hydroxyethyl methacrylate) on its property related to water. Journal of Applied Polymer Science, 2012, 125, 53-60.	1.3	6
14	Water Structure and Polymer Dynamics in Hydrated Blood Compatible Polymers. Kobunshi Ronbunshu, 2011, 68, 133-146.	0.2	6
15	Blood compatibility of gas plasma-treated diamond-like carbon surface—Effect of physicochemical properties of DLC surface on blood compatibility. Materials Science and Engineering C, 2011, 31, 567-573.	3.8	21
16	The Photopolymer Science and Technology Award. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 7-9.	0.1	0
17	Development of Novel DLC Film using Plasma Technique for Medical Material. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 245-250.	0.1	6
18	Hemodialysis membrane prepared from cellulose/ <i>N</i> â€methylmorpholineâ€ <i>N</i> â€oxide solution. IV. Comparative studies on the surface morphology of membranes prepared from <i>N</i> â€methylmorpholineâ€ <i>N</i> â€oxide and cuprammonium solutions. Journal of Applied Polymer Science, 2010, 116, 3040-3046.	1.3	0

#	Article	IF	CITATIONS
19	Study on the Water Structure and Blood Compatibility of Poly(acryloylmorpholine-r-butyl) Tj ETQq1 1 0.7843	14 rgBT/Ov	erlogk 10 Tf 5
20	Clarification of the Blood Compatibility Mechanism by Controlling the Water Structure at the Blood–Poly(meth)acrylate Interface. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1849-1863.	1.9	73
21	2H-NMR and 13C-NMR Study of the Hydration Behavior of Poly(2-methoxyethyl acrylate), Poly(2-hydroxyethyl methacrylate) and Poly(tetrahydrofurfuryl acrylate) in Relation to Their Blood Compatibility as Biomaterials. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1911-1924.	1.9	43
22	Water Structure and Blood Compatibility of Poly(tetrahydrofurfuryl acrylate). Journal of Biomaterials Science, Polymer Edition, 2009, 20, 591-603.	1.9	48
23	Antiâ€Biofouling Properties of Polymers with a Carboxybetaine Moiety. Macromolecular Bioscience, 2009, 9, 63-70.	2.1	86
24	Comparative study on water structures in polyHEMA and polyMEA by XRDâ€ÐSC simultaneous measurement. Journal of Applied Polymer Science, 2009, 111, 476-481.	1.3	40
25	Network structures and dynamics of dry and swollen poly(acrylate)s. Characterization of high- and low-frequency motions as revealed by suppressed or recovered intensities (SRI) analysis of 13C NMR. Polymer, 2009, 50, 6091-6099.	1.8	65
26	Surface Engineering of DLC Thin Films with Controlled Zeta Potential Using Plasma Processing and Evaluation of Cytocompatibility. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 455-460.	0.1	10
27	Controlled release of argatroban from PLA film—Effect of hydroxylesters as additives on enhancement of drug release. Journal of Applied Polymer Science, 2008, 108, 3353-3360.	1.3	26
28	Surface Engineering by Plasma Techniques of DLC for Medical Materials and B lood-compatibility Evaluation. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 225-230.	0.1	17
29	Relationship between blood compatibility and water structure—Comparative study between 2-methoxyethylacrylate- and 2-methoxyethylmethacrylate-based random copolymers. Journal of Biomedical Materials Research - Part A, 2007, 81A, 710-719.	2.1	15
30	Study on blood compatibility with poly(2-methoxyethylacrylate)—relationship between surface structure, water structure, and platelet compatibility in 2-methoxyethylacrylate/2-hydroxyethylmethacrylate diblock copolymer. Journal of Biomedical Materials Research - Part A, 2006, 76A, 540-550.	2.1	28
31	Relationship between blood compatibility of polymer material and water structure in it. Journal of Advanced Science, 2005, 17, 245-249.	0.1	2
32	Effect of water structure on blood compatibility? thermal analysis of water in poly(meth)acrylate. Journal of Biomedical Materials Research Part B, 2004, 68A, 684-695.	3.0	198
33	Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. II. Comparative studies on the permeation characteristics of membranes prepared fromN-methylmorpholine-N-oxide and cuprammonium solutions. Journal of Applied Polymer Science, 2003, 89, 333-339.	1.3	32
34	Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. III. The relationship between the drying condition of the membrane and its permeation behavior. Journal of Applied Polymer Science, 2003, 89, 1671-1681.	1.3	11
35	Structure of Water Sorbed into Poly(MEA-co-HEMA) Films As Examined by ATRâ^'IR Spectroscopy. Langmuir, 2003, 19, 429-435.	1.6	69
36	Study of Blood Compatibility with Poly(2-methoxyethyl acrylate). Relationship between Water Structure and Platelet Compatibility in Poly(2-methoxyethylacrylate-co-2-hydroxyethylmethacrylate). Biomacromolecules, 2002, 3, 36-41.	2.6	235

Ακιγα Μοςηιζυκι

#	Article	IF	CITATIONS
37	Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. I. Effect of membrane preparation conditions on its permeation characteristics. Journal of Applied Polymer Science, 2002, 84, 2302-2307.	1.3	43
38	Surface structures of solvent-cast films prepared from poly(ethylene oxide)-segmented nylons. Journal of Applied Polymer Science, 2002, 86, 10-16.	1.3	2
39	Study on kinetics of early stage protein adsorption on poly(2-methoxyethylacrylate) (PMEA) surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 203, 195-204.	2.3	81
40	In situ studies on protein adsorption onto a poly(2-methoxyethylacrylate) surface by a quartz crystal microbalance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 193, 145-152.	2.3	94
41	Fourier transform infrared study on the sorption of water to various kinds of polymer thin films. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 2175-2182.	2.4	65
42	The Structure of Water Sorbed to Polymethoxyethylacrylate Film as Examined by FT–IR Spectroscopy. Journal of Colloid and Interface Science, 2001, 242, 133-140.	5.0	56
43	Synthesis and characterization of poly(hydroxyether). I. Poly(hydroxyether) based on 2,2-bis(4-hydroxyphenyl)hexafluoropropane and 2,2-bis(4-hydroxyphenyl)propane. Journal of Applied Polymer Science, 2001, 80, 1687-1696.	1.3	5
44	Synthesis and characterization of poly(hydroxyether). II. Poly(hydroxyethers) based on various bisphenols and 2,2-bis(4-hydroxypheny)hexafluoropropane. Journal of Applied Polymer Science, 2001, 80, 1697-1709.	1.3	0
45	Polyether-segmented nylon hemodialysis membrane. VII. Studies on surface structures of various poly(ethylene oxide)-segmented nylon membranes. Journal of Applied Polymer Science, 2000, 77, 517-528.	1.3	1
46	Cold crystallization of water in hydrated poly(2-methoxyethyl acrylate) (PMEA). Polymer International, 2000, 49, 1709-1713.	1.6	173
47	Studies on surface structures of poly(ethylene oxide)-segmented nylon films. Journal of Polymer Science Part A, 2000, 38, 1045-1056.	2.5	2
48	Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)—relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials, 2000, 21, 1471-1481.	5.7	460
49	Polyether-segmented nylon hemodialysis membrane. V. Evaluation of blood compatibility of polyether-segmented nylons. Journal of Applied Polymer Science, 1998, 67, 1253-1257.	1.3	12
50	Polyether-segmented nylon hemodialysis membrane. VI. Effect of polyether segment on morphology and surface structure of membrane. Journal of Applied Polymer Science, 1998, 69, 1645-1659.	1.3	8
51	Polyether-segmented nylon hemodialysis membranes. I. Preparation and permeability characteristics of polyether-segmented nylon 610 hemodialysis membrane. Journal of Applied Polymer Science, 1997, 65, 1703-1711.	1.3	15
52	Polyether-segmented nylon hemodialysis membranes. II. Morphologies and permeability characteristics of polyether-segmented nylon 610 membrane prepared by the phase inversion method. Journal of Applied Polymer Science, 1997, 65, 1713-1721.	1.3	7
53	Polyether-segmented nylon hemodialysis membranes. III. Preparation and properties of new polyether-segmented nylon. Journal of Applied Polymer Science, 1997, 65, 1723-1729.	1.3	4
54	Polyether-segmented nylon hemodialysis membranes. IV. Membrane morphologies and permeability characteristics of dialysis membrane composed of poly(ethylene oxide)-segmented Ny69/M10. Journal of Applied Polymer Science, 1997, 65, 1731-1737.	1.3	4

ΑΚΙΓΑ ΜΟCHIZUKI

#	Article	IF	CITATIONS
55	A New Blood Compatible and Permselective Hollow Fiber Membrane for Hemodialysis. ASAIO Journal, 1996, 42, 1019-1026.	0.9	8
56	Pervaporation separation of water/ethanol mixtures through polysaccharide membranes. IV. The relationships between the permselectivity of alginic acid membrane and its solid state structure. Journal of Applied Polymer Science, 1990, 40, 385-400.	1.3	60
57	Pervaporation separation of water/ethanol mixtures through polysaccharide membranes. V. The relationships between the permselectivity of chitosan salt membrane and its solid state structure. Journal of Applied Polymer Science, 1990, 40, 633-643.	1.3	20
58	Pervaporation separation of water/ethanol mixtures through polysaccharide membranes. I. The effects of salts on the permselectivity of cellulose membrane in pervaporation. Journal of Applied Polymer Science, 1989, 37, 3357-3374.	1.3	30
59	Pervaporation separation of water/ethanol mixtures through polysaccharide membranes. II. The permselectivity of chitosan membrane. Journal of Applied Polymer Science, 1989, 37, 3375-3384.	1.3	64
60	Pervaporation separation of water/ethanol mixtures through polysaccharide membranes. III. The permselectivity of the neutralized chitosan membrane and the relationships between its permselectivity and solid state structure. Journal of Applied Polymer Science, 1989, 37, 3385-3398.	1.3	58
61	Chitosan membrane for separation of water-ethanol by pervaporation Kobunshi Ronbunshu, 1985, 42, 139-142.	0.2	15
62	The first successful carbonic anhydrase model prepared through a new route to regiospecifically bifunctionalized cyclodextrin. Journal of the American Chemical Society, 1980, 102, 1152-1153.	6.6	86