Mukesh Bachhav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1487460/publications.pdf

Version: 2024-02-01

39 cita

814 citations 687363 13 h-index 28 g-index

40 all docs 40 docs citations

40 times ranked

897 citing authors

#	Article	IF	CITATIONS
1	Compositionally graded specimen made by laser additive manufacturing as a high-throughput method to study radiation damages and irradiation-assisted stress corrosion cracking. Journal of Nuclear Materials, 2022, 560, 153493.	2.7	9
2	Chemical and elemental mapping of spent nuclear fuel sections by soft X-ray spectromicroscopy. Journal of Synchrotron Radiation, 2022, 29, 67-79.	2.4	3
3	Correlation between thickness dependent nanoscale structural chemistry and superconducting properties of ultrathin epitaxial NbN films. Materials Chemistry and Physics, 2022, 282, 125962.	4.0	5
4	Influence of field conditions on quantitative analysis of single crystal thorium dioxide by atom probe tomography. Ultramicroscopy, 2021, 220, 113167.	1.9	5
5	Understanding spinodal and binodal phase transformations in U-50Zr. Materialia, 2021, 16, 101092.	2.7	14
6	Fundamental Understanding of Nb Effect on Corrosion Mechanisms of Irradiated Zr-Nb Alloys. , 2021, , 669-695.		3
7	Isotopic Analysis of Irradiated Ceramic Fuel for Burnup and Microchemical Assessment Using Atom Probe Tomography Microscopy and Microanalysis, 2021, 27, 416-417.	0.4	O
8	Radiation-induced mixing and demixing behavior in metallic multilayers exhibiting limited solid miscibility. Microscopy and Microanalysis, 2021, 27, 2914-2915.	0.4	0
9	Microstructural Changes and Chemical Analysis of Fission Products in Irradiated Uranium-7 wt.% Molybdenum Metallic Fuel Using Atom Probe Tomography. Applied Sciences (Switzerland), 2021, 11, 6905.	2.5	5
10	Application of Atom Probe Tomography as a Method to Investigate Localized Thermal Transport in Actinide-Bearing Oxides. Microscopy and Microanalysis, 2021, 27, 3084-3085.	0.4	0
11	Nanoscale redistribution of alloying elements in high-burnup AXIOM-2 (X2 \hat{A}^{0}) and their effects on in-reactor corrosion. Corrosion Science, 2021, 190, 109652.	6.6	4
12	Emulation of neutron damage with proton irradiation and its effects on microstructure and microchemistry of Zircaloy-4. Journal of Nuclear Materials, 2021, 557, 153281.	2.7	8
13	A transmission electron microscopy study of EBR-II neutron-irradiated austenitic stainless steel 304 and nickel-base alloy X-750. Journal of Nuclear Materials, 2020, 528, 151851.	2.7	11
14	A novel approach to determine the local burnup in irradiated fuels using Atom Probe Tomography (APT). Journal of Nuclear Materials, 2020, 528, 151853.	2.7	13
15	Microstructure and fission products in the UCO kernel of an AGR-1 TRISO fuel particle after post irradiation safety testing. Journal of Nuclear Materials, 2020, 528, 151884.	2.7	5
16	Effect of proton pre-irradiation on corrosion of Zr-0.5Nb model alloys with different Nb distributions. Corrosion Science, 2020, 173, 108790.	6.6	8
17	Atom Probe Tomography for Burnup and Fission Product Analysis for Nuclear Fuels. Microscopy and Microanalysis, 2020, 26, 3086-3088.	0.4	1
18	Using Atom Probe Tomography as a Forensic Tool to Determine Burnup from Nuclear Fuels. Microscopy and Microanalysis, 2019, 25, 1554-1555.	0.4	1

#	Article	IF	Citations
19	Irradiation-induced Nb redistribution of ZrNb alloy: An APT study. Journal of Nuclear Materials, 2019, 516, 100-110.	2.7	30
20	Microstructural changes and their effect on hardening in neutron irradiated Fe-Cr alloys. Journal of Nuclear Materials, 2019, 519, 274-286.	2.7	25
21	Interpreting the Presence of an Additional Oxide Layer in Analysis of Metal Oxides–Metal Interfaces in Atom Probe Tomography. Journal of Physical Chemistry C, 2019, 123, 1313-1319.	3.1	11
22	On $\hat{l}\pm\hat{a}$ \in 2 precipitate composition in thermally annealed and neutron-irradiated Fe- 9-18Cr alloys. Journal of Nuclear Materials, 2018, 500, 192-198.	2.7	56
23	Challenges and Opportunities on Elucidating Irradiated Fuels with Atom Probe Tomography. Microscopy and Microanalysis, 2018, 24, 2206-2207.	0.4	0
24	Role of structural hydroxyl groups in enhancing performance of electrochemically-synthesized bilayer V2O5. Nano Energy, 2018, 53, 449-457.	16.0	21
25	STEM-EDS/EELS and APT characterization of ZrN coatings on UMo fuel kernels. Journal of Nuclear Materials, 2018, 511, 174-182.	2.7	12
26	Microstructural characterization of as-fabricated and irradiated U-Mo fuel using SEM/EBSD. Journal of Nuclear Materials, 2018, 509, 1-8.	2.7	34
27	On Growth and Chemistry of Electrodeposited Mg Layers with Electrolytes Having Varying Cl Content for Battery Application. Microscopy and Microanalysis, 2016, 22, 1302-1303.	0.4	0
28	Field Evaporation Behavior of Metal Oxide/Metal Interfaces. Microscopy and Microanalysis, 2016, 22, 678-679.	0.4	0
29	Microstructure and Chemistry of Electrodeposited Mg Films. Journal of the Electrochemical Society, 2016, 163, D645-D650.	2.9	5
30	Atomic Scale Investigation of Orthopyroxene and Olivine Grain Boundaries by Atom Probe Tomography. Microscopy and Microanalysis, 2015, 21, 1315-1316.	0.4	5
31	Microscopic Characterization of Electrodeposited Mg Layers for Battery Application. Microscopy and Microanalysis, 2015, 21, 335-336.	0.4	0
32	Clustering and Radiation Induced Segregation in Neutron Irradiated Fe-(3-18)Cr Alloys. Microscopy and Microanalysis, 2015, 21, 581-582.	0.4	0
33	Microstructural changes in a neutron-irradiated Fe–6 at.%Cr alloy. Journal of Nuclear Materials, 2014, 453, 334-339.	2.7	77
34	Microstructural changes in a neutron-irradiated Fe–15 at.%Cr alloy. Journal of Nuclear Materials, 2014, 454, 381-386.	2.7	51
35	α′ precipitation in neutron-irradiated Fe–Cr alloys. Scripta Materialia, 2014, 74, 48-51.	5.2	149
36	On the current role of atom probe tomography in materials characterization and materials science. Current Opinion in Solid State and Materials Science, 2013, 17, 217-223.	11.5	52

Mukesh Bachhav

#	Article	IF	CITATIONS
37	Investigation of O-18 enriched hematite (α-Fe2O3) by laser assisted atom probe tomography. International Journal of Mass Spectrometry, 2013, 335, 57-60.	1.5	67
38	Investigation of wÃ $\frac{1}{4}$ stite (Fe $1\hat{a}^{2}$ O) by femtosecond laser assisted atom probe tomography. Ultramicroscopy, 2011, 111, 584-588.	1.9	59
39	Enhanced nonvolatile resistive switching in dilutely cobalt doped TiO2. Applied Physics Letters, 2009, 95, .	3.3	63