Marco Cempini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1487321/publications.pdf

Version: 2024-02-01

471509 677142 2,010 34 17 22 citations h-index g-index papers 35 35 35 1764 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robotics and Autonomous Systems, 2015, 64, 120-136.	5.1	566
2	A light-weight active orthosis for hip movement assistance. Robotics and Autonomous Systems, 2015, 73, 123-134.	5.1	210
3	A Powered Finger–Thumb Wearable Hand Exoskeleton With Self-Aligning Joint Axes. IEEE/ASME Transactions on Mechatronics, 2015, 20, 705-716.	5.8	136
4	Self-Alignment Mechanisms for Assistive Wearable Robots: A Kinetostatic Compatibility Method. IEEE Transactions on Robotics, 2013, 29, 236-250.	10.3	116
5	Design, development, and testing of a lightweight hybrid robotic knee prosthesis. International Journal of Robotics Research, 2018, 37, 953-976.	8.5	99
6	An oscillator-based smooth real-time estimate of gait phase for wearable robotics. Autonomous Robots, 2017, 41, 759-774.	4.8	95
7	A Lightweight, Efficient Fully Powered Knee Prosthesis With Actively Variable Transmission. IEEE Robotics and Automation Letters, 2019, 4, 1186-1193.	5.1	71
8	Design and Experimental Characterization of a Shoulder-Elbow Exoskeleton With Compliant Joints for Post-Stroke Rehabilitation. IEEE/ASME Transactions on Mechatronics, 2019, 24, 1485-1496.	5.8	69
9	Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG). Journal of NeuroEngineering and Rehabilitation, 2014, 11, 165.	4.6	65
10	A Mechatronic System for Robot-Mediated Hand Telerehabilitation. IEEE/ASME Transactions on Mechatronics, 2015, 20, 1753-1764.	5.8	56
11	A novel hand exoskeleton with series elastic actuation for modulated torque transfer. Mechatronics, 2019, 61, 69-82.	3.3	49
12	Kinematics and design of a portable and wearable exoskeleton for hand rehabilitation., 2013, 2013, 6650414.		45
13	Usability test of a hand exoskeleton for activities of daily living: an example of user-centered design. Disability and Rehabilitation: Assistive Technology, 2017, 12, 84-96.	2.2	37
14	Design, Development, and Validation of a Lightweight Nonbackdrivable Robotic Ankle Prosthesis. IEEE/ASME Transactions on Mechatronics, 2019, 24, 471-482.	5.8	35
15	Functional Design of a Powered Elbow Orthosis Toward its Clinical Employment. IEEE/ASME Transactions on Mechatronics, 2016, 21, 1880-1891.	5. 8	33
16	A Compact, Lightweight Robotic Ankle-Foot Prosthesis: Featuring a Powered Polycentric Design. IEEE Robotics and Automation Magazine, 2020, 27, 87-102.	2.0	31
17	Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 29.	4.6	30
18	On the design of ergonomic wearable robotic devices for motion assistance and rehabilitation., 2012, 2012, 6124-7.		26

#	Article	IF	Citations
19	Vision-Based Pose Estimation for Robot-Mediated Hand Telerehabilitation. Sensors, 2016, 16, 208.	3.8	26
20	Design, development, and bench-top testing of a powered polycentric ankle prosthesis. , 2017, , .		26
21	A lightweight robotic ankle prosthesis with non-backdrivable cam-based transmission. , 2017, 2017, 1142-1147.		23
22	NEUROExos: A powered elbow orthosis for post-stroke early neurorehabilitation. , 2013, 2013, 342-5.		21
23	A novel shoulder-elbow exoskeleton with series elastic actuators. , 2016, , .		20
24	Modeling, design & Distribution and a novel Passive Variable Stiffness Joint (pVSJ)., 2016,,.		19
25	A novel adaptive oscillators-based control for a powered multi-joint lower-limb orthosis. , 2015, , .		18
26	Analysis of relative displacement between the HX wearable robotic exoskeleton and the user's hand. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 147.	4.6	16
27	Technologically-advanced assessment of upper-limb spasticity: a pilot study. European Journal of Physical and Rehabilitation Medicine, 2018, 54, 536-544.	2.2	15
28	Gastrocnemius myoelectric control of a robotic hip exoskeleton., 2015, 2015, 3881-4.		12
29	Phase-II Clinical Validation of a Powered Exoskeleton for the Treatment of Elbow Spasticity. Frontiers in Neuroscience, 2017, 11, 261.	2.8	12
30	Design and validation of a miniaturized SEA transmission system. Mechatronics, 2018, 49, 149-156.	3.3	11
31	A clutch mechanism for switching between position and stiffness control of a variable stiffness actuator., 2015,,.		7
32	Hybrid Actuation Systems for Lightweight Transfemoral Prostheses. , 2017, , .		7
33	Relevance of Series-Elastic actuation in rehabilitation and assistance robotic: Two cases of study. , 2015, , .		3
34	A Simulation Study to Characterize the Effects of Frequency Modulation during Epidural Electrical Stimulation. Biosystems and Biorobotics, 2013, , 533-537.	0.3	0