List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1486926/publications.pdf Version: 2024-02-01

		8208	12940
401	24,728	78	136
papers	citations	h-index	g-index
411	411	411	21070
all docs	docs citations	times ranked	citing authors

WANOIN IIN

#	Article	IF	CITATIONS
1	Coupling of dielectric barrier discharge plasma with oxygen permeable membrane for highly efficient low-temperature permeation. Journal of Membrane Science, 2022, 641, 119896.	4.1	13
2	Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water. Chinese Journal of Chemical Engineering, 2022, 41, 260-266.	1.7	12
3	Relation between permeate pressure and operational parameters in VOC/nitrogen separation by a PDMS composite membrane. Separation and Purification Technology, 2022, 280, 119974.	3.9	17
4	Interface regulation of mixed matrix membranes by ultrathin MOF nanosheet for faster CO2 transfer. Journal of Membrane Science, 2022, 642, 119991.	4.1	17
5	Facile construction of polyzwitterion membrane via assembly of graphene oxide-based core-brush nanosheet for high-efficiency water permeation. Journal of Membrane Science, 2022, 644, 120150.	4.1	10
6	Efficient separation of (C1–C2) alcohol solutions by graphyne membranes: A molecular simulation study. Journal of Membrane Science, 2022, 644, 120139.	4.1	10
7	PDMS with Tunable Side Group Mobility and Its Highly Permeable Membrane for Removal of Aromatic Compounds. Angewandte Chemie, 2022, 134, .	1.6	2
8	Separation of mono-/di-valent ions via charged interlayer channels of graphene oxide membranes. Journal of Membrane Science, 2022, 645, 120212.	4.1	32
9	Rücktitelbild: PDMS with Tunable Side Group Mobility and Its Highly Permeable Membrane for Removal of Aromatic Compounds (Angew. Chem. 6/2022). Angewandte Chemie, 2022, 134, .	1.6	0
10	<scp>Oneâ€step</scp> thermal processing of <scp>BaCe₀</scp> _. <scp>₈Y₀</scp> _. <scp hydrogen permeable <scp>multichannel</scp> hollow fiber membrane. AICHE Journal, 2022, 68, .</scp 	≫12&/sub>	>O≥ _{3<!--</td-->}
11	High-flux corrugated PDMS composite membrane fabricated by using nanofiber substrate. Journal of Membrane Science, 2022, 647, 120336.	4.1	15
12	<scp>UTSA</scp> â€280 metal–organic framework incorporated <scp>6FDA</scp> â€polyimide mixedâ€matrix membranes for ethylene/ethane separation. AICHE Journal, 2022, 68, .	1.8	17
13	Control of zeolite framework flexibility for ultra-selective carbon dioxide separation. Nature Communications, 2022, 13, 1427.	5.8	22
14	Pollution and Cleaning of PDMS Pervaporation Membranes after Recovering Ethyl Acetate from Aqueous Saline Solutions. Membranes, 2022, 12, 404.	1.4	1
15	Screen-printing of core-shell Mn3O4@C nanocubes based sensing microchip performing ultrasensitive recognition of allura red. Food and Chemical Toxicology, 2022, 162, 112908.	1.8	12
16	Methanol/dimethyl carbonate separation using graphene oxide membrane via cationic control of molecular transport channels. Journal of Membrane Science, 2022, 650, 120457.	4.1	11
17	Beyond separation: Membranes towards medicine. , 2022, 2, 100020.		4
18	In situ fabrication of urchin-like Cu@carbon nanoneedles based aptasensor for ultrasensitive recognition of trace mercury ion. Biosensors and Bioelectronics, 2022, 206, 114147.	5.3	8

#	Article	IF	CITATIONS
19	Polyamide@GO microporous membrane with enhanced permeability for the molecular sieving of nitrogen over VOC. Journal of Membrane Science, 2022, 652, 120443.	4.1	6
20	Efficient separation of methanol/dimethyl carbonate mixtures by UiO-66 MOF incorporated chitosan mixed-matrix membrane. Journal of Membrane Science, 2022, 652, 120473.	4.1	20
21	Graphene oxide membrane regulated by surface charges and interlayer channels for selective transport of monovalent ions over divalent ions. Separation and Purification Technology, 2022, 291, 120938.	3.9	20
22	PDMS with Tunable Side Group Mobility and Its Highly Permeable Membrane for Removal of Aromatic Compounds. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
23	Graphene Nanopores and Nanochannels for Water Transport. Membrane, 2022, 47, 68-75.	0.0	0
24	Tuning of solvent evaporation to prepare PEBA membrane with high separation performance for the pervaporation of phenol aqueous solution. Journal of Membrane Science, 2022, 656, 120638.	4.1	12
25	Electrostaticâ€Induced Crystalâ€Rearrangement of Porous Organic Cage Membrane for CO ₂ Capture. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
26	Membranes for the life sciences and their future roles in medicine. Chinese Journal of Chemical Engineering, 2022, 49, 1-20.	1.7	5
27	Electrostaticâ€Induced Crystalâ€Rearrangement of Porous Organic Cage Membrane for CO ₂ Capture. Angewandte Chemie, 2022, 134, .	1.6	6
28	PDMS thin-film composite membrane fabricated by ultraviolet crosslinking acryloyloxy-terminated monomers. Journal of Membrane Science, 2022, 658, 120763.	4.1	10
29	Emerging membranes for separation of organic solvent mixtures by pervaporation or vapor permeation. Separation and Purification Technology, 2022, 299, 121729.	3.9	12
30	Natural gas purification by asymmetric membranes: An overview. Green Energy and Environment, 2021, 6, 176-192.	4.7	51
31	Microporous polyimide VOC-rejective membrane for the separation of nitrogen/VOC mixture. Journal of Hazardous Materials, 2021, 402, 123817.	6.5	30
32	Rational tuning of the viscosity of membrane solution for the preparation of sub-micron thick PDMS composite membrane for pervaporation of ethanol-water solution. Separation and Purification Technology, 2021, 255, 117729.	3.9	13
33	Recent advances in facilitated transport membranes for olefin/paraffin separation. Discover Chemical Engineering, 2021, 1, 1.	1.1	10
34	Highly efficient preparation of Ce0.8Sm0.2O2-δ–SrCo0.9Nb0.1O3-δ dual-phase four-channel hollow fiber membrane via one-step thermal processing approach. Journal of Membrane Science, 2021, 620, 118752.	4.1	22
35	M-gallate MOF/6FDA-polyimide mixed-matrix membranes for C2H4/C2H6 separation. Journal of Membrane Science, 2021, 620, 118852.	4.1	39
36	Artificial channels for confined mass transport at the sub-nanometre scale. Nature Reviews Materials, 2021, 6, 294-312.	23.3	263

#	Article	IF	CITATIONS
37	Dehydration of <scp>C₂</scp> – <scp>C₄</scp> alcohol/water mixtures via electrostatically enhanced graphene oxide laminar membranes. AICHE Journal, 2021, 67, aic17170.	1.8	26
38	Tailoring of a catalyst La0.8Ce0.1Ni0.4Ti0.6O3â^´î´ interlayer via in situ exsolution for a catalytic membrane reactor. Reaction Chemistry and Engineering, 2021, 6, 1395-1403.	1.9	2
39	Screenâ€printing of nanocubeâ€based flexible microchips for the precise biosensing of ethanol during fermentation. AICHE Journal, 2021, 67, e17142.	1.8	10
40	Designing Biomimic Two-Dimensional Ionic Transport Channels for Efficient Ion Sieving. ACS Nano, 2021, 15, 5209-5220.	7.3	98
41	Exclusive and fast water channels in zwitterionic graphene oxide membrane for efficient water–ethanol separation. AICHE Journal, 2021, 67, e17215.	1.8	24
42	Fungal Cell Wallâ€Graphene Oxide Microcomposite Membrane for Organic Solvent Nanofiltration. Advanced Functional Materials, 2021, 31, 2100110.	7.8	42
43	3D Prussian blue/Pt decorated carbon nanofibers based screen-printed microchips for the ultrasensitive hydroquinone biosensing. Chinese Journal of Chemical Engineering, 2021, 37, 105-113.	1.7	10
44	Janus Nanocages of Platinumâ€Group Metals and Their Use as Effective Dualâ€Electrocatalysts. Angewandte Chemie, 2021, 133, 10472-10480.	1.6	4
45	Janus Nanocages of Platinumâ€Group Metals and Their Use as Effective Dualâ€Electrocatalysts. Angewandte Chemie - International Edition, 2021, 60, 10384-10392.	7.2	33
46	Fabrication of surface-charged MXene membrane and its application for water desalination. Journal of Membrane Science, 2021, 623, 119076.	4.1	95
47	Performance of PVDF Based Membranes with 2D Materials for Membrane Assisted-Crystallization Process. Membranes, 2021, 11, 302.	1.4	7
48	Au/In ₂ O ₃ Nanocubes Based Labelâ€free Aptasensor for Ultrasensitive and Rapid Recognition of Cardiac Troponinâ€I. Electroanalysis, 2021, 33, 1810-1818.	1.5	10
49	ZIF-301 MOF/6FDA-DAM polyimide mixed-matrix membranes for CO2/CH4 separation. Separation and Purification Technology, 2021, 264, 118431.	3.9	40
50	Zrâ€MOFâ€Enabled Controllable Ion Sieving and Proton Conductivity in Flow Battery Membrane. Advanced Functional Materials, 2021, 31, 2104629.	7.8	64
51	Heat-Integrated Pervaporation–Distillation Hybrid System for the Separation of Methyl Acetate–Methanol Azeotropes. Industrial & Engineering Chemistry Research, 2021, 60, 10327-10337.	1.8	17
52	Recent advances in electrochemical enzymatic biosensors based on regular nanostructured materials. Journal of Electroanalytical Chemistry, 2021, 893, 115328.	1.9	21
53	Designing GO Channels with High Selectivity for CO ₂ /N ₂ Separation via Incorporating Metal Ions. Chemistry - an Asian Journal, 2021, 16, 3141-3150.	1.7	6
54	MILâ€101(Cr) Microporous Nanocrystals Intercalating Graphene Oxide Membrane for Efficient Hydrogen Purification. Chemistry - an Asian Journal, 2021, 16, 3162-3169.	1.7	11

#	Article	IF	CITATIONS
55	Ultrafast Water Transport in Twoâ€Dimensional Channels Enabled by Spherical Polyelectrolyte Brushes with Controllable Flexibility. Angewandte Chemie, 2021, 133, 20086-20094.	1.6	4
56	Ultrafast Water Transport in Twoâ€Dimensional Channels Enabled by Spherical Polyelectrolyte Brushes with Controllable Flexibility. Angewandte Chemie - International Edition, 2021, 60, 19933-19941.	7.2	39
57	Structural manipulation of ZIF-8-based membranes for high-efficiency molecular separation. Separation and Purification Technology, 2021, 270, 118722.	3.9	27
58	Ultrathin 2D catalysts with N-coordinated single Co atom outside Co cluster for highly efficient Zn-air battery. Chemical Engineering Journal, 2021, 421, 129719.	6.6	38
59	Pervaporation membrane materials: Recent trends and perspectives. Journal of Membrane Science, 2021, 636, 119557.	4.1	140
60	Fabrication of molten nitrate/nitrite dual-phase four-channel hollow fiber membranes for nitrogen oxides separation. Journal of Membrane Science, 2021, 635, 119506.	4.1	6
61	In-situ growth of Cu@CuFe Prussian blue based core-shell nanowires for non-enzymatic electrochemical determination of ascorbic acid with high sensitivity and reusability. Journal of Electroanalytical Chemistry, 2021, 900, 115718.	1.9	8
62	Benchmark CO2 separation achieved by highly fluorinated nanoporous molecular sieve membranes from nonporous precursor via in situ cross-linking. Journal of Membrane Science, 2021, 638, 119698.	4.1	6
63	Designing highly selective and stable water transport channel through graphene oxide membranes functionalized with polyhedral oligomeric silsesquioxane for ethanol dehydration. Journal of Membrane Science, 2021, 638, 119675.	4.1	14
64	A handheld testing device for the fast and ultrasensitive recognition of cardiac troponin I via an ion-sensitive field-effect transistor. Biosensors and Bioelectronics, 2021, 193, 113554.	5.3	20
65	Reverse cation segregation and crack self-healing of Ba0.3Sr0.7Fe0.9Mo0.1O3-δ perovskite four-channel hollow fiber membrane. Journal of Membrane Science, 2021, 639, 119753.	4.1	3
66	Recycle of ceramic substrate of PDMS/ceramic composite membranes towards alcohol-permselective pervaporation. Journal of Membrane Science, 2021, 640, 119835.	4.1	24
67	Two-Dimensional-Material Membranes: Manipulating the Transport Pathway for Molecular Separation. Accounts of Materials Research, 2021, 2, 114-128.	5.9	89
68	Virtual Special Issue of Research Highlights on Sustainable Energy and Clean Fuels at State Key Laboratory of Materials-Oriented Chemical Engineering (SKL-MCE), China. Energy & Fuels, 2021, 35, 905-910.	2.5	3
69	The chemistry and applications of flexible porous coordination polymers. EnergyChem, 2021, 3, 100067.	10.1	66
70	In Situ Construction of Oriented Ptâ€PANI Needleâ€Like Nanoarraysâ€Based Labelâ€Free Aptasensor for Ultrafast and Ultrasensitive Recognition of Cardiac Troponin I. Advanced Materials Interfaces, 2021, 8,	1.9	3
71	In Situ Construction of Oriented Ptâ€PANI Needle‣ike Nanoarraysâ€Based Labelâ€Free Aptasensor for Ultrafast and Ultrasensitive Recognition of Cardiac Troponin I (Adv. Mater. Interfaces 24/2021). Advanced Materials Interfaces, 2021, 8,	1.9	1
72	Pebaxâ€Based Membrane Filled with Twoâ€Dimensional Mxene Nanosheets for Efficient CO ₂ Capture. Chemistry - an Asian Journal, 2020, 15, 2364-2370.	1.7	72

#	Article	IF	CITATIONS
73	Cysteamine-crosslinked graphene oxide membrane with enhanced hydrogen separation property. Journal of Membrane Science, 2020, 595, 117568.	4.1	54
74	Insights into the design of nineteen-channel perovskite hollow fiber membrane and its oxygen transport behaviour. Journal of Membrane Science, 2020, 595, 117600.	4.1	28
75	Polydimethylsiloxane (PDMS) Composite Membrane Fabricated on the Inner Surface of a Ceramic Hollow Fiber: From Single-Channel to Multi-Channel. Engineering, 2020, 6, 89-99.	3.2	23
76	Molecular Bridges Stabilize Graphene Oxide Membranes in Water. Angewandte Chemie - International Edition, 2020, 59, 1689-1695.	7.2	166
77	Ultrafast waterâ€selective permeation through graphene oxide membrane with water transport promoters. AICHE Journal, 2020, 66, e16812.	1.8	44
78	Bola-amphiphile-imidazole embedded GO membrane with enhanced solvent dehydration properties. Journal of Membrane Science, 2020, 595, 117545.	4.1	20
79	Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science, 2020, 598, 117761.	4.1	348
80	Sharply promoted CO2 diffusion in a mixed matrix membrane with hierarchical supra-nanostructured porous coordination polymer filler. Journal of Membrane Science, 2020, 597, 117772.	4.1	23
81	Molecular Bridges Stabilize Graphene Oxide Membranes in Water. Angewandte Chemie, 2020, 132, 1706-1712.	1.6	17
82	Facet-controlled Pt–Ir nanocrystals with substantially enhanced activity and durability towards oxygen reduction. Materials Today, 2020, 35, 69-77.	8.3	45
83	Facile preparation of porous Co3O4 nanocubes for directly screen-printing an ultrasensitive glutamate biosensor microchip. Sensors and Actuators B: Chemical, 2020, 306, 127587.	4.0	29
84	Fluorine-doped barium cobaltite perovskite membrane for oxygen separation and syngas production. Ceramics International, 2020, 46, 27469-27475.	2.3	16
85	Production of alcohol-free wine and grape spirit by pervaporation membrane technology. Food and Bioproducts Processing, 2020, 123, 262-273.	1.8	21
86	Tuning Gateâ€Opening of a Flexible Metal–Organic Framework for Ternary Gas Sieving Separation. Angewandte Chemie - International Edition, 2020, 59, 22756-22762.	7.2	173
87	Recent Progress in Separation Membranes and Their Fermentation Coupled Processes for Biobutanol Recovery. Energy & Fuels, 2020, 34, 11962-11975.	2.5	24
88	In Situ-Forming Magnetic Fe ₃ O ₄ Nanoroses on Defect-Controllable Mesoporous Graphene Oxide for Enzyme-Mimic Sensing. Industrial & Engineering Chemistry Research, 2020, 59, 17934-17943.	1.8	7
89	Graphene-based membranes for pervaporation processes. Chinese Journal of Chemical Engineering, 2020, 28, 1755-1766.	1.7	35
90	Mixed-matrix membranes with soluble porous organic molecular cage for highly efficient C3H6/C3H8 separation. Journal of Membrane Science, 2020, 611, 118288.	4.1	47

#	Article	IF	CITATIONS
91	A novel catalytic membrane reactor with homologous exsolution-based perovskite catalyst. Journal of Membrane Science, 2020, 608, 118213.	4.1	23
92	<scp>PDMS</scp> mixedâ€matrix membranes with molecular fillers via reactive incorporation and their application for bioâ€butanol recovery from aqueous solution. Journal of Polymer Science, 2020, 58, 2634-2643.	2.0	8
93	g-C3N4 nanosheets with tunable affinity and sieving effect endowing polymeric membranes with enhanced CO2 capture property. Separation and Purification Technology, 2020, 250, 117200.	3.9	41
94	Roughness-enhanced hydrophobic graphene oxide membrane for water desalination via membrane distillation. Journal of Membrane Science, 2020, 611, 118364.	4.1	85
95	In situ fabrication of aloe-like Au–ZnO micro/nanoarrays for ultrasensitive biosensing of catechol. Biosensors and Bioelectronics, 2020, 156, 112145.	5.3	33
96	Molecular insights on NaCl crystal formation approaching PVDF membranes functionalized with graphene. Physical Chemistry Chemical Physics, 2020, 22, 7817-7827.	1.3	9
97	Artificial Electron Mediator with Nanocubic Architecture Highly Promotes Microbial Electrosynthesis from Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2020, 8, 6777-6785.	3.2	20
98	Ptâ€ŀrâ€Pd Trimetallic Nanocages as a Dual Catalyst for Efficient Oxygen Reduction and Evolution Reactions in Acidic Media. Advanced Energy Materials, 2020, 10, 1904114.	10.2	100
99	Fluorinated PDMS membrane with anti-biofouling property for in-situ biobutanol recovery from fermentation-pervaporation coupled process. Journal of Membrane Science, 2020, 609, 118225.	4.1	69
100	A Separationâ€Sensing Membrane Performing Precise Realâ€Time Serum Analysis During Blood Drawing. Angewandte Chemie - International Edition, 2020, 59, 18701-18708.	7.2	23
101	A Separationâ€Sensing Membrane Performing Precise Realâ€Time Serum Analysis During Blood Drawing. Angewandte Chemie, 2020, 132, 18860-18867.	1.6	0
102	Polyelectrolyte Functionalized Ti ₂ CT <i>_x</i> MXene Membranes for Pervaporation Dehydration of Isopropanol/Water Mixtures. Industrial & Engineering Chemistry Research, 2020, 59, 4732-4741.	1.8	63
103	Water-proof, electrolyte-nonvolatile, and flexible Li-Air batteries via O2-Permeable silica-aerogel-reinforced polydimethylsiloxane external membranes. Energy Storage Materials, 2020, 27, 297-306.	9.5	69
104	Surpassing Robeson Upper Limit for CO2/N2 Separation with Fluorinated Carbon Molecular Sieve Membranes. CheM, 2020, 6, 631-645.	5.8	73
105	Nanochannel-confined charge repulsion of ions in a reduced graphene oxide membrane. Journal of Materials Chemistry A, 2020, 8, 25880-25889.	5.2	27
106	In-situ recovery of bio-butanol from glycerol fermentation using PDMS/ceramic composite membrane. Separation and Purification Technology, 2019, 229, 115811.	3.9	20
107	Facile Synthesis and Characterization of Pd@Ir _{<i>n</i>L} (<i>n</i> = 1–4) Core–Shell Nanocubes for Highly Efficient Oxygen Evolution in Acidic Media. Chemistry of Materials, 2019, 31, 5867-5875.	3.2	65
108	Pervaporative separation of methyl acetate–methanol azeotropic mixture using highâ€performance polydimethylsiloxane/ceramic composite membrane. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2343.	0.8	5

#	Article	IF	CITATIONS
109	Membranes with Intrinsic Micro-Porosity: Structure, Solubility, and Applications. Membranes, 2019, 9, 3.	1.4	26
110	Simultaneously enhancing interfacial adhesion and pervaporation separation performance of PDMS/ceramic composite membrane via a facile substrate surface grafting approach. AICHE Journal, 2019, 65, e16773.	1.8	21
111	Ultrathin Membranes with a Polymer/Nanofiber Interpenetrated Structure for High-Efficiency Liquid Separations. ACS Applied Materials & amp; Interfaces, 2019, 11, 36717-36726.	4.0	21
112	Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coordination Chemistry Reviews, 2019, 395, 25-45.	9.5	184
113	In situ fabrication of CuO nanowire film for high-sensitive ascorbic acid recognition. Sensors and Actuators B: Chemical, 2019, 296, 126617.	4.0	33
114	Highâ€Performance CO ₂ Capture through Polymerâ€Based Ultrathin Membranes. Advanced Functional Materials, 2019, 29, 1900735.	7.8	70
115	Electrochemical mercury biosensors based on advanced nanomaterials. Journal of Materials Chemistry B, 2019, 7, 3620-3632.	2.9	35
116	Chemically Robust, Cu-based Porous Coordination Polymer Nanosheets for Efficient Hydrogen Evolution: Experimental and Theoretical Studies. ACS Applied Materials & Interfaces, 2019, 11, 21086-21093.	4.0	22
117	Cation-diffusion controlled formation of thin graphene oxide composite membranes for efficient ethanol dehydration. Science China Materials, 2019, 62, 925-935.	3.5	26
118	Iridiumâ€Based Cubic Nanocages with 1.1â€nmâ€Thick Walls: A Highly Efficient and Durable Electrocatalyst for Water Oxidation in an Acidic Medium. Angewandte Chemie - International Edition, 2019, 58, 7244-7248.	7.2	89
119	Optimizing separation performance and interfacial adhesion of PDMS/PVDF composite membranes for butanol recovery from aqueous solution. Journal of Membrane Science, 2019, 579, 210-218.	4.1	38
120	Controllable ion transport by surface-charged graphene oxide membrane. Nature Communications, 2019, 10, 1253.	5.8	327
121	Finely Tuned Porous Coordination Polymers To Boost Methane Separation Efficiency. Chemistry - A European Journal, 2019, 25, 8790-8796.	1.7	5
122	Two-dimensional Ti ₂ CT _x MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration. Journal of Materials Chemistry A, 2019, 7, 12095-12104.	5.2	96
123	MOF-801 incorporated PEBA mixed-matrix composite membranes for CO2 capture. Separation and Purification Technology, 2019, 217, 229-239.	3.9	128
124	A simple seed-embedded method to prepare ZIF-8 membranes supported on flexible PESf hollow fibers. Journal of Industrial and Engineering Chemistry, 2019, 72, 222-231.	2.9	25
125	Effect of substrate on formation and nanofiltration performance of graphene oxide membranes. Journal of Membrane Science, 2019, 574, 196-204.	4.1	113
126	Fabrication of ZIF-300 membrane and its application for efficient removal of heavy metal ions from wastewater. Journal of Membrane Science, 2019, 572, 20-27.	4.1	80

#	Article	IF	CITATIONS
127	Simultaneous biosensing of catechol and hydroquinone via a truncated cube-shaped Au/PBA nanocomposite. Biosensors and Bioelectronics, 2019, 124-125, 260-267.	5.3	67
128	Enhanced CO2/N2 separation performance by using dopamine/polyethyleneimine-grafted TiO2 nanoparticles filled PEBA mixed-matrix membranes. Separation and Purification Technology, 2019, 214, 78-86.	3.9	47
129	Controlled flexibility of porous coordination polymers by shifting the position of the –CH ₃ group around coordination sites and their highly efficient gas separation. Inorganic Chemistry Frontiers, 2018, 5, 1780-1786.	3.0	23
130	Finely Controlled Stepwise Engineering of Pore Environments and Mechanistic Elucidation of Waterâ€Stable, Flexible 2D Porous Coordination Polymers. Chemistry - A European Journal, 2018, 24, 6412-6417.	1.7	16
131	High-performance electrochemical mercury aptasensor based on synergistic amplification of Pt nanotube arrays and Fe3O4/rGO nanoprobes. Biosensors and Bioelectronics, 2018, 104, 1-7.	5.3	45
132	Accelerating Membraneâ€based CO ₂ Separation by Soluble Nanoporous Polymer Networks Produced by Mechanochemical Oxidative Coupling. Angewandte Chemie - International Edition, 2018, 57, 2816-2821.	7.2	44
133	Accelerating Membraneâ€based CO ₂ Separation by Soluble Nanoporous Polymer Networks Produced by Mechanochemical Oxidative Coupling. Angewandte Chemie, 2018, 130, 2866-2871.	1.6	10
134	Manipulation of interactions at membrane interfaces for energy and environmental applications. Progress in Polymer Science, 2018, 80, 125-152.	11.8	56
135	Graphene oxide membrane for molecular separation: challenges and opportunities. Science China Materials, 2018, 61, 1021-1026.	3.5	33
136	Incorporating Graphene Oxide into Alginate Polymer with a Cationic Intermediate To Strengthen Membrane Dehydration Performance. ACS Applied Materials & Interfaces, 2018, 10, 13903-13913.	4.0	37
137	One-step synthesis of three-dimensional Co(OH)2/rGO nano-flowers as enzyme-mimic sensors for glucose detection. Electrochimica Acta, 2018, 270, 147-155.	2.6	56
138	Highly efficient CH ₄ purification by LaBTB PCP-based mixed matrix membranes. Journal of Materials Chemistry A, 2018, 6, 599-606.	5.2	32
139	Ultrathin two-dimensional MXene membrane for pervaporation desalination. Journal of Membrane Science, 2018, 548, 548-558.	4.1	295
140	Stretchable Ti ₃ C ₂ T _{<i>x</i>} MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range. ACS Nano, 2018, 12, 56-62.	7.3	696
141	Efficient CO2/N2 separation by mixed matrix membrane with amide functionalized porous coordination polymer filler. Chinese Chemical Letters, 2018, 29, 854-856.	4.8	15
142	Design and Fabrication of Ceramic Catalytic Membrane Reactors for Green Chemical Engineering Applications. Engineering, 2018, 4, 848-860.	3.2	56
143	Enhanced Breakthrough Efficiency by a Chemically Stable Porous Coordination Polymer with Optimized Nanochannel. ACS Applied Materials & Interfaces, 2018, 10, 39025-39031.	4.0	22
144	Facilitated water-selective permeation via PEGylation of graphene oxide membrane. Journal of Membrane Science, 2018, 567, 311-320.	4.1	49

#	Article	IF	CITATIONS
145	Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. Journal of Membrane Science, 2018, 563, 625-632.	4.1	135
146	Tunable dextran retention of MXene-TiO ₂ mesoporous membranes by adjusting the 2D MXene content. 2D Materials, 2018, 5, 045003.	2.0	42
147	Structure-directed fabrication of ultrathin carbon nanosheets from layered metal salts: A separation and supercapacitor study. Carbon, 2018, 139, 740-749.	5.4	30
148	Precisely Controlling Nanochannels of Graphene Oxide Membranes through Ligninâ€Based Cation Decoration for Dehydration of Biofuels. ChemSusChem, 2018, 11, 2315-2320.	3.6	33
149	Metal-organic framework adsorbents and membranes for separation applications. Current Opinion in Chemical Engineering, 2018, 20, 122-131.	3.8	77
150	An ultrasensitive biosensing flexible chip using a novel silver@Prussian blue core-shell nanocube composite. Sensors and Actuators B: Chemical, 2018, 276, 31-41.	4.0	34
151	2D MXene Nanofilms with Tunable Gas Transport Channels. Advanced Functional Materials, 2018, 28, 1801511.	7.8	332
152	Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon. Separation and Purification Technology, 2018, 205, 273-283.	3.9	46
153	A regular nanostructured dithiolene metal complex film for ultrasensitive biosensing of liver enzyme. Sensors and Actuators B: Chemical, 2017, 241, 860-867.	4.0	18
154	Improved ethanol recovery through mixed-matrix membrane with hydrophobic MAF-6 as filler. Separation and Purification Technology, 2017, 178, 105-112.	3.9	78
155	Perovskite Hollow Fibers with Precisely Controlled Cation Stoichiometry via Oneâ€6tep Thermal Processing. Advanced Materials, 2017, 29, 1606377.	11.1	29
156	Microporous Polyamide Membranes for Molecular Sieving of Nitrogen from Volatile Organic Compounds. Angewandte Chemie - International Edition, 2017, 56, 5755-5759.	7.2	40
157	Microporous Polyamide Membranes for Molecular Sieving of Nitrogen from Volatile Organic Compounds. Angewandte Chemie, 2017, 129, 5849-5853.	1.6	2
158	Vapor transport in graphene oxide laminates and their application in pervaporation. Current Opinion in Chemical Engineering, 2017, 16, 56-64.	3.8	24
159	Perovskites: Perovskite Hollow Fibers with Precisely Controlled Cation Stoichiometry via Oneâ€Step Thermal Processing (Adv. Mater. 18/2017). Advanced Materials, 2017, 29, .	11.1	0
160	Recent progress in Prussian blue films: Methods used to control regular nanostructures for electrochemical biosensing applications. Biosensors and Bioelectronics, 2017, 96, 17-25.	5.3	82
161	In-situ secondary growth of nanocube-based Prussian-blue film as an ultrasensitive biosensor. Progress in Natural Science: Materials International, 2017, 27, 297-302.	1.8	4
162	Highly efficient recovery of propane by mixedâ€matrix membrane via embedding functionalized graphene oxide nanosheets into polydimethylsiloxane. AICHE Journal, 2017, 63, 3501-3510.	1.8	25

#	Article	IF	CITATIONS
163	Homochiral porous coordination polymers with a rare utk topology and two types of uniform channels for enantioseparation. CrystEngComm, 2017, 19, 2718-2722.	1.3	11
164	Graphene oxide membranes supported on the ceramic hollow fibre for efficient H2 recovery. Chinese Journal of Chemical Engineering, 2017, 25, 752-759.	1.7	34
165	Fabrication of morphology-preserved microporous carbon from a zeolitic-like porous coordination polymer. Inorganic Chemistry Frontiers, 2017, 4, 234-240.	3.0	11
166	A highly sensitive and reusable electrochemical mercury biosensor based on tunable vertical single-walled carbon nanotubes and a target recycling strategy. Journal of Materials Chemistry B, 2017, 5, 1073-1080.	2.9	41
167	Advanced nanomaterial inks for screen-printed chemical sensors. Sensors and Actuators B: Chemical, 2017, 243, 919-926.	4.0	92
168	Pre-design and synthesis of a five-fold interpenetrated pcu -type porous coordination polymer and its CO ₂ /CO separation. CrystEngComm, 2017, 19, 6927-6931.	1.3	9
169	Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550, 380-383.	13.7	1,171
170	A highly sensitive electrochemical IFN-γ aptasensor based on a hierarchical graphene/AuNPs electrode interface with a dual enzyme-assisted amplification strategy. RSC Advances, 2017, 7, 45053-45060.	1.7	18
171	Novel ZIF-300 Mixed-Matrix Membranes for Efficient CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 38575-38583.	4.0	63
172	Nanoparticles@rGO membrane enabling highly enhanced water permeability and structural stability with preserved selectivity. AICHE Journal, 2017, 63, 5054-5063.	1.8	107
173	High efficient water/ethanol separation by a mixed matrix membrane incorporating MOF filler with high water adsorption capacity. Journal of Membrane Science, 2017, 544, 68-78.	4.1	116
174	Enhancing oxygen permeation via multiple types of oxygen transport paths in heptaâ€bore perovskite hollow fibers. AICHE Journal, 2017, 63, 4273-4277.	1.8	17
175	3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance. Journal of Membrane Science, 2017, 542, 41-51.	4.1	142
176	Mechanical Synthesis of COF Nanosheet Cluster and Its Mixed Matrix Membrane for Efficient CO ₂ Removal. ACS Applied Materials & Interfaces, 2017, 9, 29093-29100.	4.0	152
177	Excellent Biofouling Alleviation of Thermoexfoliated Vermiculite Blended Poly(ether sulfone) Ultrafiltration Membrane. ACS Applied Materials & Interfaces, 2017, 9, 30024-30034.	4.0	60
178	Fine-tuning optimal porous coordination polymers using functional alkyl groups for CH ₄ purification. Journal of Materials Chemistry A, 2017, 5, 17874-17880.	5.2	32
179	Manipulation of confined structure in alcohol-permselective pervaporation membranes. Chinese Journal of Chemical Engineering, 2017, 25, 1616-1626.	1.7	18
180	Water-resistant porous coordination polymers for gas separation. Coordination Chemistry Reviews, 2017, 332, 48-74.	9.5	331

#	Article	IF	CITATIONS
181	Fabrication of high silicalite-1 content filled PDMS thin composite pervaporation membrane for the separation of ethanol from aqueous solutions. Journal of Membrane Science, 2017, 524, 1-11.	4.1	64
182	Hydrophobicâ€functionalized ZIFâ€8 nanoparticles incorporated PDMS membranes for highâ€selective separation of propane/nitrogen. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 110-120.	0.8	23
183	Nanostructured mesoporous carbon polyethersulfone composite ultrafiltration membrane with significantly low protein adsorption and bacterial adhesion. Carbon, 2017, 111, 689-704.	5.4	122
184	Spray-evaporation assembled graphene oxide membranes for selective hydrogen transport. Separation and Purification Technology, 2017, 174, 126-135.	3.9	86
185	Facile synthesis of Prussian blue nanocubes/silver nanowires network as a water-based ink for the direct screen-printed flexible biosensor chips. Biosensors and Bioelectronics, 2017, 92, 709-717.	5.3	65
186	A facile and green strategy for preparing newly-designed 3D graphene/gold film and its application in highly efficient electrochemical mercury assay. Biosensors and Bioelectronics, 2017, 89, 871-879.	5.3	56
187	Organic Solventâ€Free Process forÂCyclohexanone Ammoximation by a Ceramic Membrane Distributor. Chemical Engineering and Technology, 2016, 39, 883-890.	0.9	9
188	Ceramic hollow fiberâ€supported PDMS composite membranes for oxygen enrichment from air. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 460-466.	0.8	10
189	High-efficiency, Synergistic ZnO-Coated SiC Photocatalytic Filter with Antibacterial Properties. Industrial & Engineering Chemistry Research, 2016, 55, 6661-6670.	1.8	37
190	Facile tailoring of the two-dimensional graphene oxide channels for gas separation. RSC Advances, 2016, 6, 54281-54285.	1.7	39
191	UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513, 155-165.	4.1	284
192	A novel membrane with heterogeneously functionalized nanocrystal layers performing blood separation and sensing synchronously. Chemical Communications, 2016, 52, 12706-12709.	2.2	8
193	Highly oxygen-permeable and CO2-stable Ce0.8Sm0.2O2â^'δ-SrCo0.9Nb0.1O3â^'δ dual-phase membrane for oxygen separation. Fuel Processing Technology, 2016, 154, 19-26.	3.7	18
194	Aluminophosphate-17 and silicoaluminophosphate-17 membranes for CO2 separations. Journal of Membrane Science, 2016, 520, 507-514.	4.1	45
195	Single layer of graphene/Prussian blue nano-grid as the low-potential biosensors with high electrocatalysis. Electrochimica Acta, 2016, 217, 210-217.	2.6	20
196	Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Catalysis Science and Technology, 2016, 6, 7002-7023.	2.1	350
197	Membranen aus zweidimensionalen Materialien: eine neue Familie hochleistungsfÄ ¤ iger Trennmembranen. Angewandte Chemie, 2016, 128, 13580-13595.	1.6	37
198	Twoâ€Dimensionalâ€Material Membranes: A New Family of Highâ€Performance Separation Membranes. Angewandte Chemie - International Edition, 2016, 55, 13384-13397.	7.2	605

#	Article	IF	CITATIONS
199	Halogen bonded supramolecular porous structures with a kgm layer. CrystEngComm, 2016, 18, 9227-9230.	1.3	6
200	Unprecedented Perovskite Oxyfluoride Membranes with Highâ€Efficiency Oxygen Ion Transport Paths for Lowâ€Temperature Oxygen Permeation. Advanced Materials, 2016, 28, 3511-3515.	11.1	121
201	Design and synthesis of luminescent porous coordination polymers for chromaticity modulation, sensing of nitrobenzene and iodine encapsulation. CrystEngComm, 2016, 18, 5639-5646.	1.3	20
202	Compact film fabrication of porous coordination polymer Co ₃ [Co(CN) ₆] ₂ and its reversible vapochromic behavior. Dalton Transactions, 2016, 45, 10249-10255.	1.6	17
203	CO preferential oxidation in a novel Au@ZrO2 flow-through catalytic membrane reactor with high stability and efficiency. International Journal of Hydrogen Energy, 2016, 41, 13513-13520.	3.8	14
204	Conducting Membranes: Unprecedented Perovskite Oxyfluoride Membranes with Highâ€Efficiency Oxygen Ion Transport Paths for Lowâ€Temperature Oxygen Permeation (Adv. Mater. 18/2016). Advanced Materials, 2016, 28, 3510-3510.	11.1	1
205	Size effects of graphene oxide on mixed matrix membranes for CO ₂ separation. AICHE Journal, 2016, 62, 2843-2852.	1.8	117
206	Fabrication of a Homogeneous, Integrated, and Compact Film of Organic–Inorganic Hybrid Ni(en) ₃ Ag ₂ I ₄ with Near-Infrared Absorbance and Semiconducting Features. Inorganic Chemistry, 2016, 55, 1230-1235.	1.9	12
207	PEBA/ceramic hollow fiber composite membrane for high-efficiency recovery of bio-butanol via pervaporation. Journal of Membrane Science, 2016, 510, 338-347.	4.1	71
208	Preparation and characterization of Ni ₂ (mal) ₂ (bpy) homochiral MOF membrane. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 60-69.	0.8	20
209	Subnanometer Two-Dimensional Graphene Oxide Channels for Ultrafast Gas Sieving. ACS Nano, 2016, 10, 3398-3409.	7.3	330
210	Screen-printed biosensor chips with Prussian blue nanocubes for the detection of physiological analytes. Sensors and Actuators B: Chemical, 2016, 228, 679-687.	4.0	69
211	Efficient acetone–butanol–ethanol (ABE) production by a butanol-tolerant mutant of Clostridium beijerinckii in a fermentation–pervaporation coupled process. Biochemical Engineering Journal, 2016, 105, 90-96.	1.8	31
212	CO ₂ -Tolerant SrFe _{0.8} Nb _{0.2} O _{3â^'δ} –Carbonate Dual-Phase Multichannel Hollow Fiber Membrane for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2016, 55, 3300-3307.	1.8	22
213	Membranes with Fast and Selective Gasâ€Transport Channels of Laminar Graphene Oxide for Efficient CO ₂ Capture. Angewandte Chemie - International Edition, 2015, 54, 578-582.	7.2	184
214	Highâ€Efficiency Waterâ€Transport Channels using the Synergistic Effect of a Hydrophilic Polymer and Graphene Oxide Laminates. Advanced Functional Materials, 2015, 25, 5809-5815.	7.8	177
215	A robust mixedâ€conducting multichannel hollow fiber membrane reactor. AICHE Journal, 2015, 61, 2592-2599.	1.8	28
216	Innenrücktitelbild: Membranes with Fast and Selective Gas-Transport Channels of Laminar Graphene Oxide for Efficient CO2Capture (Angew. Chem. 2/2015). Angewandte Chemie, 2015, 127, 707-707.	1.6	0

#	Article	lF	CITATIONS
217	Mixed matrix membranes with molecular-interaction-driven tunable free volumes for efficient bio-fuel recovery. Journal of Materials Chemistry A, 2015, 3, 4510-4521.	5.2	109
218	Photochemical degradation of phenol solutions on Co3O4 nanorods with sulfate radicals. Catalysis Today, 2015, 258, 576-584.	2.2	80
219	Influence of permeation modes on oxygen permeability of the multichannel mixed-conducting hollow fibre membrane. Chemical Engineering Science, 2015, 122, 614-621.	1.9	15
220	Enhanced performance of g-C3N4/TiO2 photocatalysts for degradation of organic pollutants under visible light. Chinese Journal of Chemical Engineering, 2015, 23, 1326-1334.	1.7	62
221	Mechanical properties and interfacial adhesion of composite membranes probed by in-situ nano-indentation/scratch technique. Journal of Membrane Science, 2015, 494, 205-215.	4.1	63
222	Prussian blue nanocubes decorated three-dimensional silver nanowires network for high-performance electrochemical biosensing. Sensors and Actuators B: Chemical, 2015, 221, 1009-1016.	4.0	21
223	Two solvent-dependent porous coordination polymers with –OH decorated ligands: unusual non-crystallographic net and fsh topology. CrystEngComm, 2015, 17, 5609-5613.	1.3	16
224	A ZIF-71 Hollow Fiber Membrane Fabricated by Contra-Diffusion. ACS Applied Materials & Interfaces, 2015, 7, 16157-16160.	4.0	71
225	In-situ fabrication of well-distributed gold nanocubes on thiol graphene as a third-generation biosensor for ultrasensitive glucose detection. Electrochimica Acta, 2015, 176, 162-171.	2.6	33
226	CO2-tolerant mixed-conducting multichannel hollow fiber membrane for efficient oxygen separation. Journal of Membrane Science, 2015, 485, 79-86.	4.1	27
227	Integrated, highly crystalline and water stable coordination framework films on various substrates and water-assisted protonic conductivity. Chemical Communications, 2015, 51, 7947-7949.	2.2	16
228	Natural Gas Purification Using a Porous Coordination Polymer with Water and Chemical Stability. Inorganic Chemistry, 2015, 54, 4279-4284.	1.9	133
229	Facile fabrication of a three-dimensional gold nanowire array for high-performance electrochemical sensing. Journal of Materials Chemistry B, 2015, 3, 3134-3140.	2.9	25
230	Graphene-based membranes. Chemical Society Reviews, 2015, 44, 5016-5030.	18.7	967
231	Hollow fiber modules with ceramic-supported PDMS composite membranes for pervaporation recovery of bio-butanol. Separation and Purification Technology, 2015, 146, 24-32.	3.9	57
232	Novel Approach for Developing Dual-Phase Ceramic Membranes for Oxygen Separation through Beneficial Phase Reaction. ACS Applied Materials & Interfaces, 2015, 7, 22918-22926.	4.0	53
233	Enhanced High Oxygen Permeation of Mixed-Conducting Multichannel Hollow Fiber Membrane via Surface Modified Porous Layer. Industrial & Engineering Chemistry Research, 2015, 54, 6985-6992. –	1.8	12
234	CO ₂ -tolerant oxygen-permeable perovskite-type membranes with high permeability. Journal of Materials Chemistry A, 2015, 3, 22564-22573.	5.2	81

#	Article	IF	CITATIONS
235	New luminescent porous coordination polymers with an acylamide-decorated linker for anion recognition and reversible I ₂ accommodation. CrystEngComm, 2015, 17, 8226-8230.	1.3	13
236	The roles of rod-packed organic units for preparing stable porous coordination polymers with carboxylate ligands. Inorganic Chemistry Communication, 2015, 61, 53-56.	1.8	3
237	Multichannel mixed onducting hollow fiber membranes for oxygen separation. AICHE Journal, 2014, 60, 1969-1976.	1.8	36
238	High performance ceramic hollow fiber supported PDMS composite pervaporation membrane for bio-butanol recovery. Journal of Membrane Science, 2014, 450, 38-47.	4.1	136
239	An ultrasensitive electrochemical sensing platform for Hg2+ based on a density controllable metal-organic hybrid microarray. Biosensors and Bioelectronics, 2014, 54, 165-170.	5.3	41
240	A facile way to prepare ceramic-supported graphene oxide composite membrane via silane-graft modification. Applied Surface Science, 2014, 307, 631-637.	3.1	159
241	River Water Purification via a Coagulation-Porous Ceramic Membrane Hybrid Process. Chinese Journal of Chemical Engineering, 2014, 22, 113-119.	1.7	10
242	A Graphene Oxide Membrane with Highly Selective Molecular Separation of Aqueous Organic Solution. Angewandte Chemie - International Edition, 2014, 53, 6929-6932.	7.2	409
243	PDMS/ceramic composite membrane for pervaporation separation of acetone–butanol–ethanol (ABE) aqueous solutions and its application in intensification of ABE fermentation process. Chemical Engineering and Processing: Process Intensification, 2014, 86, 162-172.	1.8	64
244	A low-κ dielectric metal–organic-framework compound showing novel three-step dielectric relaxations originating from orientational motion of dipolar guest molecules. New Journal of Chemistry, 2014, 38, 2254-2257.	1.4	18
245	A guest-dependent thermochromic feature in a metal–organic framework and its thin film on different supports. Journal of Materials Chemistry A, 2014, 2, 13698-13704.	5.2	27
246	Three-dimensional porous microarray of gold modified electrode for ultrasensitive and simultaneous assay of various cancer biomarkers. Journal of Materials Chemistry B, 2014, 2, 2658.	2.9	13
247	Enhanced stability of membrane reactor for thermal decomposition of CO2 via porous-dense-porous triple-layer composite membrane. Journal of Membrane Science, 2014, 471, 9-15.	4.1	30
248	PDMS/PVDF composite pervaporation membrane for the separation of dimethyl carbonate from a methanol solution. Journal of Membrane Science, 2014, 471, 47-55.	4.1	56
249	Prussian blue nanocubes modified graphite electrodes for the electrochemical detection of various analytes with high performance. Sensors and Actuators B: Chemical, 2014, 202, 820-826.	4.0	18
250	In Situ Fabrication of Threeâ€Dimensional Graphene Films on Gold Substrates with Controllable Pore Structures for Highâ€Performance Electrochemical Sensing. Advanced Functional Materials, 2014, 24, 7032-7041.	7.8	54
251	Fabrication of MOFs/PEBA mixed matrix membranes and their application in bio-butanol production. Separation and Purification Technology, 2014, 133, 40-47.	3.9	69
252	Pervaporation Membranes for Biobutanol Production. ACS Sustainable Chemistry and Engineering, 2014, 2, 546-560.	3.2	167

#	Article	IF	CITATIONS
253	3D graphene nano-grid as a homogeneous protein distributor for ultrasensitive biosensors. Biosensors and Bioelectronics, 2014, 61, 422-428.	5.3	7
254	膜ä,Žè†œå应å™∵ 现状〜Œ'æ~ä,Žæœ⁰é‡. Scientia Sinica Chimica, 2014, 44, 1469-1480.	0.2	1
255	Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation. Journal of Membrane Science, 2013, 446, 181-188.	4.1	232
256	Progress on Porous Ceramic Membrane Reactors for Heterogeneous Catalysis over Ultrafine and Nano-sized Catalysts. Chinese Journal of Chemical Engineering, 2013, 21, 205-215.	1.7	29
257	Continuous phenol hydroxylation over ultrafine TS-1 in a side-stream ceramic membrane reactor. Korean Journal of Chemical Engineering, 2013, 30, 852-859.	1.2	7
258	Effects of fabrication processes on oxygen permeation of Nb2O5-doped SrCo0.8Fe0.2O3â^`î´ micro-tubular membranes. Journal of Membrane Science, 2013, 442, 1-7.	4.1	21
259	A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition. Nanoscale, 2013, 5, 10219.	2.8	34
260	A novel porousâ€dense dualâ€layer composite membrane reactor with longâ€ŧerm stability. AICHE Journal, 2013, 59, 4355-4363.	1.8	14
261	Fabrication of homochiral metalâ€organic framework membrane for enantioseparation of racemic diols. AICHE Journal, 2013, 59, 4364-4372.	1.8	71
262	Ceramic Supported PDMS and PEGDA Composite Membranes for CO2 Separation. Chinese Journal of Chemical Engineering, 2013, 21, 348-356.	1.7	33
263	Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors. Chemical Communications, 2013, 49, 10326.	2.2	104
264	Amperometric glucose biosensor based on direct assembly of Prussian blue film with ionic liquid-chitosan matrix assisted enzyme immobilization. Sensors and Actuators B: Chemical, 2013, 176, 978-984.	4.0	54
265	Facile synthesis of hierarchically aloe-like gold micro/nanostructures for ultrasensitive DNA recognition. Biosensors and Bioelectronics, 2013, 49, 184-191.	5.3	39
266	Enhanced phenol hydroxylation with oxygen using a ceramic membrane distributor. Chinese Journal of Catalysis, 2013, 34, 200-208.	6.9	11
267	In-situ growth of micro-cubic Prussian blue–TiO2 composite film as a highly sensitive H2O2 sensor by aerosol co-deposition approach. Biosensors and Bioelectronics, 2013, 47, 329-334.	5.3	28
268	Preparation of Palladium Nanoparticles Deposited on a Silanized Hollow Fiber Ceramic Membrane Support and Their Catalytic Properties. Industrial & Engineering Chemistry Research, 2013, 52, 5002-5008.	1.8	26
269	A Comparative Study of the Performance of <scp><scp>SrCo</scp></scp> _{0.76} <scp><scp>Fe</scp>0.19<scp>Aland (<scp><scp>SrCo</scp></scp>_{0.8}<scp>Fe</scp></scp>_{0.2}<scp>Co</scp></scp>)> < 1.9 < st	sub>0.19 ıb>3â^'δ
270	Mixed@CConducting Membranes. Journal of the American Ceramic Society, 2013, 96, 1285-1291. Single layer Prussian blue grid as a versatile enzyme trap for low-potential biosensors. Journal of Materials Chemistry, 2012, 22, 14874.	6.7	19

#	Article	IF	CITATIONS
271	Highly enhanced performance of glucose biosensor via in situ growth of oriented Au micro-cypress. Journal of Materials Chemistry, 2012, 22, 21917.	6.7	14
272	Highly Porous Metal Oxide Networks of Interconnected Nanotubes by Atomic Layer Deposition. Nano Letters, 2012, 12, 5033-5038.	4.5	78
273	Fabrication of asymmetric tubular mixed-conducting dense membranes by a combined spin-spraying and co-sintering process. Journal of Membrane Science, 2012, 415-416, 313-319.	4.1	38
274	High performance tubular solid oxide fuel cells with BSCF cathode. International Journal of Hydrogen Energy, 2012, 37, 13022-13029.	3.8	22
275	Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: defect formation and elimination. Journal of Materials Chemistry, 2012, 22, 19222.	6.7	134
276	Mixed conducting ceramic membranes for high efficiency power generation with CO2 capture. Current Opinion in Chemical Engineering, 2012, 1, 163-170.	3.8	38
277	Novel Reactive Distillation–Pervaporation Coupled Process for Ethyl Acetate Production with Water Removal from Reboiler and Acetic Acid Recycle. Industrial & Engineering Chemistry Research, 2012, 51, 8079-8086.	1.8	42
278	Polymer/Ceramic Composite Membranes and Their Application in Pervaporation Process. Chinese Journal of Chemical Engineering, 2012, 20, 62-70.	1.7	61
279	Catalytic MFI zeolite membranes supported on α-Al2O3 substrates for m-xylene isomerization. Journal of Membrane Science, 2012, 389, 451-458.	4.1	22
280	A novel Nb2O5-doped SrCo0.8Fe0.2O3â^î^ oxide with high permeability and stability for oxygen separation. Journal of Membrane Science, 2012, 405-406, 300-309.	4.1	81
281	Formation mechanism of metal–organic framework membranes derived from reactive seeding approach. Microporous and Mesoporous Materials, 2012, 155, 90-98.	2.2	49
282	Pervaporation properties of polyvinyl alcohol/ceramic composite membrane for separation of ethyl acetate/ethanol/water ternary mixtures. Korean Journal of Chemical Engineering, 2012, 29, 228-234.	1.2	16
283	Hierarchical self-assembly of double structured Prussian blue film for highly sensitive biosensors. Journal of Materials Chemistry, 2011, 21, 11968.	6.7	11
284	A new cathode for solid oxide fuel cells capable of in situ electrochemical regeneration. Journal of Materials Chemistry, 2011, 21, 15343.	6.7	81
285	Combined TiO ₂ membrane filtration and ozonation for efficient water treatment to enhance the reuse of wastewater. Desalination and Water Treatment, 2011, 34, 57-62.	1.0	14
286	Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications. Chemical Communications, 2011, 47, 10886.	2.2	145
287	A Novel Dual-Membrane Reactor for Continuous Heterogeneous Oxidation Catalysis. Industrial & Engineering Chemistry Research, 2011, 50, 10458-10464.	1.8	30
288	Metal–organic framework membranes fabricated via reactive seeding. Chemical Communications, 2011, 47, 737-739.	2.2	350

#	Article	IF	CITATIONS
289	Step-by-Step Seeding Procedure for Preparing HKUST-1 Membrane on Porous α-Alumina Support. Langmuir, 2011, 27, 4309-4312.	1.6	176
290	A Highly Thermally Stable Ferroelectric Metal–Organic Framework and Its Thin Film with Substrate Surface Nature Dependent Morphology. Journal of the American Chemical Society, 2011, 133, 12330-12333.	6.6	78
291	Fabrication and Catalytic Properties of Palladium Nanoparticles Deposited on a Silanized Asymmetric Ceramic Support. Industrial & Engineering Chemistry Research, 2011, 50, 4405-4411.	1.8	35
292	Pervaporation Separation of Butanol-Water Mixtures Using Polydimethylsiloxane/Ceramic Composite Membrane. Chinese Journal of Chemical Engineering, 2011, 19, 40-44.	1.7	63
293	Effect of temperature-controlled poly(diallyldimethylammonium chloride) on morphology of self-assembled Prussian Blue electrode and its high detection sensitivity of hydrogen peroxide. Electrochimica Acta, 2011, 56, 8163-8167.	2.6	11
294	Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a surface graft/coating approach. Chemical Engineering Journal, 2011, 174, 495-503.	6.6	165
295	Dual function filtration and catalytic breakdown of organic pollutants in wastewater using ozonation with titania and alumina membranes. Journal of Membrane Science, 2011, 378, 61-72.	4.1	54
296	Simulation of adsorption, diffusion, and permeability of water and ethanol in NaA zeolite membranes. Journal of Membrane Science, 2011, 376, 40-49.	4.1	48
297	Template-free synthesis of TS-1 zeolite film on tubular mullite support. Applied Surface Science, 2011, 257, 1928-1931.	3.1	9
298	Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation–PV coupled process. Journal of Membrane Science, 2011, 373, 121-129.	4.1	187
299	A simple method for healing nonzeolitic pores of MFI membranes by hydrolysis of silanes. Journal of Membrane Science, 2011, 366, 427-435.	4.1	29
300	Effects of polydimethylsiloxane (PDMS) molecular weight on performance of PDMS/ceramic composite membranes. Journal of Membrane Science, 2011, 375, 334-344.	4.1	107
301	10.2478/s11814-009-0273-9. , 2011, 26, 1580.		1
302	Cobalt-site cerium doped SmxSr1â^'xCoO3â^'δ oxides as potential cathode materials for solid-oxide fuel cells. Journal of Power Sources, 2010, 195, 3386-3393.	4.0	31
303	Synthesis of nano-particle and highly porous conducting perovskites from simple in situ sol-gel derived carbon templating process. Bulletin of Materials Science, 2010, 33, 371-376.	0.8	16
304	Catalytic mechanism and reaction pathway of acetone ammoximation to acetone oxime over TS-1. Korean Journal of Chemical Engineering, 2010, 27, 1423-1427.	1.2	6
305	Interfacial adhesion between polymer separation layer and ceramic support for composite membrane. AICHE Journal, 2010, 56, 1584-1592.	1.8	86
306	Preparation of ceramic-supported poly(vinyl alcohol)–chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures. Journal of Membrane Science, 2010, 349, 341-348.	4.1	125

#	Article	IF	CITATIONS
307	Structural, electrical and electrochemical characterizations of SrNb0.1Co0.9O3â~î^ as a cathode of solid oxide fuel cells operating below 600°C. International Journal of Hydrogen Energy, 2010, 35, 1356-1366.	3.8	78
308	Reduction-Tolerant Oxygen-Permeable Perovskite-Type Oxide Sr _{0.7} Ba _{0.3} Fe _{0.9} Mo _{0.1} O _{3â^îî} . Chemistry of Materials, 2010, 22, 3610-3618.	3.2	40
309	Continuous Acetone Ammoximation over TS-1 in a Tubular Membrane Reactor. Industrial & Engineering Chemistry Research, 2010, 49, 6309-6316.	1.8	32
310	Hydrolysis of Ethyl Lactate Coupled by Vapor Permeation Using Polydimethylsiloxane/Ceramic Composite Membrane. Industrial & Engineering Chemistry Research, 2010, 49, 11244-11249.	1.8	11
311	Layered perovskite Y1â^'Ca BaCo4O7+ as ceramic membranes for oxygen separation. Journal of Alloys and Compounds, 2010, 492, 552-558.	2.8	25
312	Template-free growth of regular nano-structured Prussian blue on a platinum surface and its application in biosensors with high sensitivity. Journal of Materials Chemistry, 2010, 20, 7815.	6.7	49
313	A Comparative Study of the Performance of Symmetric and Asymmetric Mixed-conducting Membranes. Chinese Journal of Chemical Engineering, 2009, 17, 562-570.	1.7	18
314	Model Study on a Submerged Catalysis/Membrane Filtration System for Phenol Hydroxylation Catalyzed by TS-1. Chinese Journal of Chemical Engineering, 2009, 17, 648-653.	1.7	7
315	Facile auto-combustion synthesis for oxygen separation membrane application. Journal of Membrane Science, 2009, 329, 219-227.	4.1	13
316	SrAl2O4-improved SrCo0.8Fe0.2O3â^î^´ mixed-conducting membrane for effective production of hydrogen from methane. Journal of Membrane Science, 2009, 331, 109-116.	4.1	28
317	In situ templating synthesis of conic Ba0·5Sr0·5Co0·8Fe0·2O3â ^{~,} δ perovskite at elevated temperature. Bulletin of Materials Science, 2009, 32, 407-412.	0.8	5
318	Effect of initial solution apparent pH on the performance of submerged hybrid system for the p-nitrophenol hydrogenation. Korean Journal of Chemical Engineering, 2009, 26, 1580-1584.	1.2	2
319	A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian Blue modified electrode. Electrochemistry Communications, 2009, 11, 484-487.	2.3	88
320	Amperometric glucose biosensor with high sensitivity based on self-assembled Prussian Blue modified electrode. Electrochimica Acta, 2009, 54, 7490-7494.	2.6	33
321	CO2-tolerant mixed conducting oxide for catalytic membrane reactor. Journal of Membrane Science, 2009, 340, 141-147.	4.1	41
322	Preparation of meso–macroporous TiO2 ceramic based on membrane jet-flow emulsification—Influences of triblock copolymers on the processes. Journal of Colloid and Interface Science, 2009, 333, 324-328.	5.0	8
323	Photocatalytic decomposition of 4-chlorophenol over an efficient N-doped TiO2 under sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201, 15-22.	2.0	50
324	Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3â^îr´ electrode prepared by electroless deposition technique. Journal of Power Sources, 2009, 186, 244-251.	4.0	28

#	Article	IF	CITATIONS
325	Decomposition of CO2 coupled with POM in a thin tubular oxygen-permeable membrane reactor. Catalysis Today, 2009, 148, 298-302.	2.2	35
326	Silicalite-1 Zeolite Membrane Reactor Packed with HZSM-5 Catalyst for meta-Xylene Isomerization. Industrial & Engineering Chemistry Research, 2009, 48, 4293-4299.	1.8	46
327	Fabrication of Supported Mesoporous TiO ₂ Membranes: Matching the Assembled and Interparticle Pores for an Improved Ultrafiltration Performance. ACS Applied Materials & Interfaces, 2009, 1, 1607-1612.	4.0	32
328	Effect of Catalyst Morphology on the Performance of Submerged Nanocatalysis/Membrane Filtration System. Industrial & Engineering Chemistry Research, 2009, 48, 6600-6607.	1.8	21
329	Double-site yttria-doped Sr1â^'xYxCo1â^'yYyO3â^'Î′ perovskite oxides as oxygen semi-permeable membranes. Journal of Alloys and Compounds, 2009, 474, 477-483.	2.8	28
330	Scientific Development and Industrial Application of InorganicMembranes in China. Membrane, 2009, 34, 18-25.	0.0	0
331	Solid-oxide fuel cell operated on in situ catalytic decomposition products of liquid hydrazine. Journal of Power Sources, 2008, 177, 323-329.	4.0	27
332	Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO+SDC anode and BSCF+SDC cathode. Journal of Power Sources, 2008, 179, 640-648.	4.0	35
333	Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1â^'xCo0.8Fe0.2O3â^'δ (x>0) perovskite as a solid-oxide fuel cell cathode. Journal of Power Sources, 2008, 182, 24-31.	4.0	218
334	Synthesis and assessment of La0.8Sr0.2ScyMn1â^'yO3â^'Î′ as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte. Journal of Power Sources, 2008, 183, 471-478.	4.0	44
335	Effects of sintering atmospheres on sintering behavior, electrical conductivity and oxygen permeability of mixed-conducting membranes. Journal of Membrane Science, 2008, 316, 128-136.	4.1	12
336	Experimental and modeling study of oxygen permeation modes for asymmetric mixed-conducting membranes. Journal of Membrane Science, 2008, 322, 429-435.	4.1	23
337	A selfâ€catalytic membrane reactor based on a supported mixedâ€conducting membrane. AICHE Journal, 2008, 54, 1678-1680.	1.8	16
338	A submerged membrane reactor for continuous phenol hydroxylation over TSâ€1. AICHE Journal, 2008, 54, 1842-1849.	1.8	42
339	Optimization of preparation conditions for polydimethylsiloxane (PDMS)/ceramic composite pervaporation membranes using response surface methodology. Journal of Membrane Science, 2008, 311, 23-33.	4.1	142
340	The oxidative stream reforming of methane to syngas in a thin tubular mixed-conducting membrane reactor. Journal of Membrane Science, 2008, 320, 401-406.	4.1	34
341	Systematic investigation on new SrCo1â^'yNbyO3â^'δ ceramic membranes with high oxygen semi-permeability. Journal of Membrane Science, 2008, 323, 436-443.	4.1	114
342	A high-performance no-chamber fuel cell operated on ethanol flame. Journal of Power Sources, 2008, 177, 33-39.	4.0	50

#	Article	IF	CITATIONS
343	Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3â^î´as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell. Journal of Power Sources, 2008, 180, 15-22.	4.0	156
344	Fabrication of an anode-supported yttria-stabilized zirconia thin film for solid-oxide fuel cells via wet powder spraying. Journal of Power Sources, 2008, 184, 229-237.	4.0	35
345	A self-catalytic mixed-conducting membrane reactor for effective production of hydrogen from methane. Journal of Power Sources, 2008, 185, 1340-1347.	4.0	14
346	Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3â^î^cathodes prepared via electroless deposition. Electrochimica Acta, 2008, 53, 4370-4380.	2.6	85
347	Barium- and strontium-enriched (Ba0.5Sr0.5)1+xCo0.8Fe0.2O3â^î^ oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. Acta Materialia, 2008, 56, 2687-2698.	3.8	118
348	LSCF Nanopowder from Cellulose–Glycineâ€Nitrate Process and its Application in Intermediateâ€Temperature Solidâ€Oxide Fuel Cells. Journal of the American Ceramic Society, 2008, 91, 1155-1162.	1.9	68
349	Efficient Catalytic Decomposition of CO ₂ to CO and O ₂ over Pd/Mixed-Conducting Oxide Catalyst in an Oxygen-Permeable Membrane Reactor. Environmental Science & Technology, 2008, 42, 3064-3068.	4.6	64
350	Mechanism of Nitrogen-Concentration Dependence on pH Value: Experimental and Theoretical Studies on Nitrogen-Doped TiO ₂ . Journal of Physical Chemistry C, 2008, 112, 13304-13309.	1.5	56
351	Synthesis of Si-MCM-48 membrane by solvent extraction of the surfactant template. Journal of Non-Crystalline Solids, 2008, 354, 2010-2016.	1.5	33
352	Polydimethylsiloxane (PDMS)/Ceramic Composite Membrane with High Flux for Pervaporation of Ethanolâ^'Water Mixtures. Industrial & Engineering Chemistry Research, 2007, 46, 2224-2230.	1.8	175
353	One-Step Synthesis and Characterization of La2NiO4+ÎMixed-Conductive Oxide for Oxygen Permeation. Industrial & Engineering Chemistry Research, 2007, 46, 6910-6915.	1.8	24
354	Improving Performance of a Dense Membrane Reactor for Thermal Decomposition of CO2via Surface Modification. Industrial & Engineering Chemistry Research, 2007, 46, 2000-2005.	1.8	27
355	Streaming potential characterization of LBL membranes on porous ceramic supports. AICHE Journal, 2007, 53, 969-977.	1.8	10
356	Adhesion of nanosized nickel catalysts in the nanocatalysis/UF system. AICHE Journal, 2007, 53, 1204-1210.	1.8	36
357	A dense oxygen separation membrane deriving from nanosized mixed conducting oxide. Journal of Membrane Science, 2007, 291, 172-179.	4.1	12
358	Fouling and regeneration of ceramic membranes used in recovering titanium silicalite-1 catalysts. Journal of Membrane Science, 2007, 301, 67-75.	4.1	57
359	Preparation and characterization of mixed-conducting thin tubular membrane. Journal of Membrane Science, 2007, 299, 261-267.	4.1	22
360	Chemical Expansion, Crystal Structural Stability, and Oxygen Permeability of SrCo _{0.4} Fe _{0.6â^`<i>x</i>} Al _{<i>x</i>} O _{3â^`Î} Oxides. Journal of the American Ceramic Society, 2007, 90, 3923-3929.	1.9	10

#	Article	IF	CITATIONS
361	Effect of Preparation Conditions on Visible Photocatalytic Activity of Titania Synthesized by Solution Combustion Method. Chinese Journal of Chemical Engineering, 2007, 15, 178-183.	1.7	14
362	Preparation of Macroporous TiO2 Ceramic Based on Membrane Jet-flow Emulsification. Chinese Journal of Chemical Engineering, 2007, 15, 616-618.	1.7	6
363	High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane. Electrochimica Acta, 2007, 52, 6297-6303.	2.6	34
364	Ba0.5Sr0.5Co0.8Fe0.2O3â^`î´+LaCoO3 composite cathode for Sm0.2Ce0.8O1.9-electrolyte based intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2007, 168, 330-337.	4.0	86
365	Organic–inorganic composite pervaporation membranes prepared by self-assembly of polyelectrolyte multilayers on macroporous ceramic supports. Journal of Membrane Science, 2007, 302, 78-86.	4.1	64
366	Properties and performance of A-site deficient (Ba0.5Sr0.5)1â^'xCo0.8Fe0.2O3â^'δ for oxygen permeating membrane. Journal of Membrane Science, 2007, 306, 318-328.	4.1	111
367	Preparation and Characterization of Visible-Light-Driven Carbonâ^'Sulfur-Codoped TiO2Photocatalysts. Industrial & Engineering Chemistry Research, 2006, 45, 4971-4976.	1.8	198
368	Contribution of the Surface Reactions to the Overall Oxygen Permeation of the Mixed Conducting Membranes. Industrial & Engineering Chemistry Research, 2006, 45, 2824-2829.	1.8	17
369	Synthesis of nanocrystalline conducting composite oxides based on a non-ion selective combined complexing process for functional applications. Journal of Alloys and Compounds, 2006, 426, 368-374.	2.8	117
370	Monodispersed W/O emulsion prepared by hydrophilic ceramic membrane emulsification. Desalination, 2006, 191, 219-222.	4.0	18
371	Effect of EDTA on preparation of Pd membranes by photocatalytic deposition. Desalination, 2006, 192, 117-124.	4.0	7
372	Oxygen permeability and stability of Al2O3-doped SrCo0.8Fe0.2O3â^îr´mixed conducting oxides. Journal of Membrane Science, 2006, 279, 320-327.	4.1	49
373	Improved photocatalytic deposition of palladium membranes. Journal of Membrane Science, 2006, 282, 1-6.	4.1	26
374	Match of thermal performances between the membrane and the support for supported dense mixed-conducting membranes. Journal of Membrane Science, 2006, 285, 232-238.	4.1	32
375	Effect of pH on synthesis and properties of perovskite oxide via a citrate process. AICHE Journal, 2006, 52, 769-776.	1.8	22
376	Thermal decomposition of carbon dioxide coupled with POM in a membrane reactor. AICHE Journal, 2006, 52, 2545-2550.	1.8	60
377	Selective transport of ions and molecules across layer-by-layer assembled membranes of polyelectrolytes, p-sulfonato-calix[n]arenes and Prussian Blue-type complex salts. Advances in Colloid and Interface Science, 2005, 116, 121-131.	7.0	55
378	Size- and charge-selective transport of aromatic compounds across polyelectrolyte multilayer membranes. Applied Surface Science, 2005, 246, 444-450.	3.1	64

#	Article	IF	CITATIONS
379	Polyelectrolyte multilayer membranes for desalination of aqueous salt solutions and seawater under reverse osmosis conditions. Applied Surface Science, 2005, 246, 437-443.	3.1	67
380	Emulsions prepared by two-stage ceramic membrane jet-flow emulsification. AICHE Journal, 2005, 51, 1339-1345.	1.8	19
381	Effect of the Packing Amount of Catalysts on the Partial Oxidation of Methane Reaction in a Dense Oxygen-Permeable Membrane Reactor. Industrial & Engineering Chemistry Research, 2005, 44, 1954-1959.	1.8	18
382	Structure and oxygen permeability of Ag-doped SrCo0.8Fe0.2O3-? oxides. AICHE Journal, 2004, 50, 701-707.	1.8	13
383	Influence of the size of doping ion on phase stability and oxygen permeability of SrCo0.8Fe0.2O3â [~] Î [~] oxide. Journal of Membrane Science, 2004, 230, 21-27.	4.1	25
384	Structure and Oxygen Permeability of BaCo0.4Fe0.6-xZrxO3-δ Oxide:  Effect of the Synthesis Method. Industrial & Engineering Chemistry Research, 2004, 43, 2747-2752.	1.8	9
385	Self-assembled Films of Prussian Blue and Analogues:Â Optical and Electrochemical Properties and Application as Ion-Sieving Membranes. Chemistry of Materials, 2003, 15, 245-254.	3.2	189
386	Effect of the size and amount of ZrO2 addition on properties of SrCo0.4Fe0.6O3â^δ. AICHE Journal, 2003, 49, 2374-2382.	1.8	13
387	Influence of powder synthesis methods on microstructure and oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3â^î´ perovskite-type membranes. Journal of Membrane Science, 2003, 212, 157-165.	4.1	97
388	A New Series of Sr(Co,Fe,Zr)O3-Î′Perovskite-Type Membrane Materials for Oxygen Permeation. Industrial & Engineering Chemistry Research, 2003, 42, 2299-2305.	1.8	63
389	Use of Polyelectrolyte Layer-by-Layer Assemblies as Nanofiltration and Reverse Osmosis Membranes. Langmuir, 2003, 19, 2550-2553.	1.6	250
390	Self-Assembled Films of Prussian Blue and Analogues:Â Structure and Morphology, Elemental Composition, Film Growth, and Nanosieving of Ions. Journal of Physical Chemistry B, 2003, 107, 12062-12070.	1.2	95
391	Modified Operating Mode for Improving the Lifetime of Mixed-Conducting Ceramic Membrane Reactors in the POM Environment. Industrial & Engineering Chemistry Research, 2003, 42, 795-801.	1.8	19
392	Solâ^'Gel Synthesis and Characterization of SrFeCo0.5O3.25-Î'Powder. Industrial & Engineering Chemistry Research, 2002, 41, 5432-5435.	1.8	8
393	Oxygen Transport Properties and Stability of Mixed-Conducting ZrO2-Promoted SrCo0.4Fe0.6O3-δ Oxides. Industrial & Engineering Chemistry Research, 2002, 41, 4273-4280.	1.8	24
394	YSZ-SrCo0.4Fe0.6O3-δ membranes for the partial oxidation of methane to syngas. AICHE Journal, 2002, 48, 2051-2060.	1.8	59
395	Mechanical strength, and oxygen and electronic transport properties of SrCo0.4Fe0.6O3â^î^-YSZ membranes. Journal of Membrane Science, 2001, 186, 195-204.	4.1	45
396	Tubular lanthanum cobaltite perovskite type membrane for oxygen permeation. Journal of Membrane Science, 2000, 166, 51-61.	4.1	67

#	Article	IF	CITATIONS
397	Tubular lanthanum cobaltite perovskite-type membrane reactors for partial oxidation of methane to syngas. Journal of Membrane Science, 2000, 166, 13-22.	4.1	142
398	Fabrication of La0.2Sr0.8Co0.8Fe0.2O3âÂ^'δ mesoporous membranes on porous supports from polymeric precursors. Journal of Membrane Science, 2000, 170, 9-17.	4.1	26
399	Perovskite-related ZrO2-doped SrCo0.4 Fe0.6O3-δ membrane for oxygen permeation. AICHE Journal, 1999, 45, 276-284.	1.8	56
400	Experimental and modeling study on tubular dense membranes for oxygen permeation. AICHE Journal, 1999, 45, 2519-2526.	1.8	21
401	Comparison of Oxygen Permeability and Stability of Perovskite Type La0.2A0.8Co0.2Fe0.8O3-Î'(A = Sr, Ba,) Tj ETQ	2q1 1 0.78 1.8	84314 rgBT /