Chihâ[^]Long Tsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1486859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Instability of Ga-substituted Li ₇ La ₃ Zr ₂ O ₁₂ toward metallic Li. Journal of Materials Chemistry A, 2022, 10, 10998-11009.	5.2	14
2	Active Interphase Enables Stable Performance for an Allâ€Phosphateâ€Based Composite Cathode in an Allâ€Solidâ€State Battery. Small, 2022, 18, e2200266.	5.2	7
3	Feasibility and Limitations of High-Voltage Lithium-Iron-Manganese Spinels. Journal of the Electrochemical Society, 2022, 169, 070518.	1.3	1
4	Low temperature sintering of fully inorganic all-solid-state batteries – Impact of interfaces on full cell performance. Journal of Power Sources, 2021, 482, 228905.	4.0	58
5	Ionic Conductivity of Na ₃ V ₂ P ₃ O ₁₂ as a Function of Electrochemical Potential and its Impact on Battery Performance. Batteries and Supercaps, 2021, 4, 479-484.	2.4	10
6	Insights into the reactive sintering and separated specific grain/grain boundary conductivities of Li1.3Al0.3Ti1.7(PO4)3. Journal of Power Sources, 2021, 492, 229631.	4.0	40
7	Atomic-scale investigation of Na3V2(PO4)3 formation process in chemical infiltration via in situ transmission electron microscope for solid-state sodium batteries. Nano Energy, 2021, 87, 106144.	8.2	12
8	Single-Ion-Conducting "Polymer-in-Ceramic―Hybrid Electrolyte with an Intertwined NASICON-Type Nanofiber Skeleton. ACS Applied Materials & Interfaces, 2021, 13, 61067-61077.	4.0	14
9	Dendrite-tolerant all-solid-state sodium batteries and an important mechanism of metal self-diffusion. Journal of Power Sources, 2020, 476, 228666.	4.0	26
10	Flexible All-Solid-State Li-Ion Battery Manufacturable in Ambient Atmosphere. ACS Applied Materials & Interfaces, 2020, 12, 37067-37078.	4.0	14
11	Water-based fabrication of garnet-based solid electrolyte separators for solid-state lithium batteries. Green Chemistry, 2020, 22, 4952-4961.	4.6	23
12	Engineering of Sn and Preâ€Lithiated Sn as Negative Electrode Materials Coupled to Garnet Taâ€LLZO Solid Electrolyte for Allâ€Solidâ€State Li Batteries. Batteries and Supercaps, 2020, 3, 557-565.	2.4	10
13	All-ceramic Li batteries based on garnet structured Li ₇ La ₃ Zr ₂ O ₁₂ . Materials Technology, 2020, 35, 656-674.	1.5	22
14	Room-temperature all-solid-state sodium batteries with robust ceramic interface between rigid electrolyte and electrode materials. Nano Energy, 2019, 65, 104040.	8.2	52
15	Chemical Environment-Induced Mixed Conductivity of Titanate as a Highly Stable Oxygen Transport Membrane. IScience, 2019, 19, 955-964.	1.9	23
16	A garnet structure-based all-solid-state Li battery without interface modification: resolving incompatibility issues on positive electrodes. Sustainable Energy and Fuels, 2019, 3, 280-291.	2.5	133
17	Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm ^{â°1} and its primary applications in symmetric battery cells. Journal of Materials Chemistry A, 2019, 7, 7766-7776.	5.2	129
18	Impact of Fluorination on Phase Stability, Crystal Chemistry, and Capacity of LiCoMnO ₄ High Voltage Spinels. ACS Applied Energy Materials, 2018, 1, 715-724.	2.5	10

Chihâ^'Long Tsai

#	Article	IF	CITATIONS
19	Thermal stability of 5â€V LiCoMnO4 spinels with LiF additive. Solid State Ionics, 2018, 320, 378-386.	1.3	8
20	Reactions of garnet-based solid-state lithium electrolytes with water — A depth-resolved study. Solid State Ionics, 2018, 320, 259-265.	1.3	24
21	Electrochemical Performance of All-Solid-State Li-Ion Batteries Based on Garnet Electrolyte Using Silicon as a Model Electrode. ACS Energy Letters, 2018, 3, 1006-1012.	8.8	58
22	Challenges regarding thin film deposition of garnet electrolytes for all-solid-state lithium batteries with high energy density. Ionics, 2018, 24, 2199-2208.	1.2	15
23	The influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates. Solid State Ionics, 2018, 321, 83-90.	1.3	44
24	High Capacity Garnet-Based All-Solid-State Lithium Batteries: Fabrication and 3D-Microstructure Resolved Modeling. ACS Applied Materials & Interfaces, 2018, 10, 22329-22339.	4.0	91
25	Enhancing the performance of high-voltage LiCoMnO4 spinel electrodes by fluorination. Journal of Power Sources, 2017, 341, 122-129.	4.0	20
26	Cathode-electrolyte material interactions during manufacturing of inorganic solid-state lithium batteries. Journal of Electroceramics, 2017, 38, 197-206.	0.8	63
27	Compatibility study towards monolithic self-charging power unit based on all-solid thin-film solar module and battery. Journal of Power Sources, 2017, 365, 303-307.	4.0	17
28	On the interfacial charge transfer between solid and liquid Li ⁺ electrolytes. Physical Chemistry Chemical Physics, 2017, 19, 26596-26605.	1.3	33
29	Li ₇ La ₃ Zr ₂ O ₁₂ Interface Modification for Li Dendrite Prevention. ACS Applied Materials & Interfaces, 2016, 8, 10617-10626.	4.0	632
30	About the Compatibility between High Voltage Spinel Cathode Materials and Solid Oxide Electrolytes as a Function of Temperature. ACS Applied Materials & Interfaces, 2016, 8, 26842-26850.	4.0	193
31	A Novel Sol–Gel Method for Largeâ€Scale Production of Nanopowders: Preparation of Li _{1.5} Al _{0.5} Ti _{1.5} (<scp>PO</scp> ₄) ₃ as an Example. Journal of the American Ceramic Society, 2016, 99, 410-414.	1.9	79
32	Scandium-Substituted Na ₃ Zr ₂ (SiO ₄) ₂ (PO ₄) Prepared by a Solution-Assisted Solid-State Reaction Method as Sodium-Ion Conductors. Chemistry of Materials, 2016 - 28, 4821, 4821	3.2	229
33	Influence of titanium nitride interlayer on the morphology, structure and electrochemical performance of magnetron-sputtered lithium iron phosphate thin films. Journal of Power Sources, 2015, 281, 326-333.	4.0	11
34	High conductivity of mixed phase Al-substituted Li7La3Zr2O12. Journal of Electroceramics, 2015, 35, 25-32.	0.8	60
35	Performance and stability of a liquid anode high-temperature metal–air battery. Journal of Power Sources, 2014, 247, 749-755.	4.0	13
36	Tortuosity in anode-supported proton conductive solid oxide fuel cell found from current flow rates and dusty-gas model. Journal of Power Sources, 2011, 196, 692-699.	4.0	36

Chihâ[°]Long Tsai

#	Article	IF	CITATIONS
37	Fabrication, Performance, and Model for Proton Conductive Solid Oxide Fuel Cell. Journal of the Electrochemical Society, 2011, 158, B885.	1.3	14
38	Protonic and Electronic Conduction in Proton Conductive Solid Oxide Fuel Cells. Materials Research Society Symposia Proceedings, 2011, 1330, 40501.	0.1	1
39	Low temperature sintering of Ba(Zr0.8â^'xCexY0.2)O3â^'δ using lithium fluoride additive. Solid State Ionics, 2010, 181, 1083-1090.	1.3	41
40	Effect of lithium fluoride on thermal stability of proton-conducting Ba(Zr0.8â^'xCexY0.2)O2.9 ceramics. Solid State Ionics, 2010, 181, 1654-1658.	1.3	6
41	Thermal stability of Ba(Zr0.8â^'xCexY0.2)O2.9 ceramics in carbon dioxide. Journal of Applied Physics, 2009, 105, 103504.	1.1	60
42	Anode-pore tortuosity in solid oxide fuel cells found from gas and current flow rates. Journal of Power Sources, 2008, 180, 253-264.	4.0	30
43	Orientation dependence and electric-field effect in the relaxor-based ferroelectric crystal(PbMg1/3Nb2/3O3)0.68(PbTiO3)0.32. Physical Review B, 2002, 65, .	1.1	50
44	Phases and Domain Structures in Relaxor-Based Ferroelectric (PbMg1/3Nb2/3O3)0.69(PbTiO3)0.31Single Crystal. Japanese Journal of Applied Physics, 2001, 40, 4118-4125.	0.8	20
45	Dielectric, hypersonic, and domain anomalies of (PbMg1/3Nb2/3O3)1â^²x(PbTiO3)x single crystals. Journal of Applied Physics, 2001, 89, 7908-7916.	1.1	45
46	Hypersonic and dielectric properties of (PbZn1/3Nb2/3O3)0.915–(PbTiO3)0.085 single crystal. Journal of Applied Physics, 2000, 87, 2327-2330.	1.1	13
47	Field-cooled-zero-field-heated and zero-field-heated dielectric behaviors of (Pbmg1/3Nb2/3O3)0.67(PbTiO3)0.33single crystal. Ferroelectrics, Letters Section, 2000, 27, 125-135.	0.4	4
48	Determination of Anode-Pore Tortuosity from Gas and Current Flow Rates in SOFCs. , 0, , 127-140.		0