
## Shyam S Pandey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1486244/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | CH <sub>3</sub> NH <sub>3</sub> Sn <sub><i>x</i></sub> Pb <sub>(1–<i>x</i>)</sub> I <sub>3</sub><br>Perovskite Solar Cells Covering up to 1060 nm. Journal of Physical Chemistry Letters, 2014, 5, 1004-1011.                       | 2.1 | 852       |
| 2  | All-Solid Perovskite Solar Cells with HOCO-R-NH <sub>3</sub> <sup>+</sup> I <sup>–</sup><br>Anchor-Group Inserted between Porous Titania and Perovskite. Journal of Physical Chemistry C, 2014,<br>118, 16651-16659.                | 1.5 | 191       |
| 3  | Recent advances in the orientation of conjugated polymers for organic field-effect transistors.<br>Journal of Materials Chemistry C, 2019, 7, 13323-13351.                                                                          | 2.7 | 111       |
| 4  | Facile Synthesis and Characterization of Sulfur Doped Low Bandgap Bismuth Based Perovskites by<br>Soluble Precursor Route. Chemistry of Materials, 2016, 28, 6436-6440.                                                             | 3.2 | 87        |
| 5  | Passivation of Grain Boundary by Squaraine Zwitterions for Defect Passivation and Efficient<br>Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 10012-10020.                                                   | 4.0 | 70        |
| 6  | Investigation of Interfacial Charge Transfer in Solution Processed Cs <sub>2</sub> SnI <sub>6</sub><br>Thin Films. Journal of Physical Chemistry C, 2017, 121, 13092-13100.                                                         | 1.5 | 66        |
| 7  | Synthesis and characterization of squaric acid based NIR dyes for their application towards<br>dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 213, 23-29.                               | 2.0 | 64        |
| 8  | Solvent driven performance in thin floating-films of PBTTT for organic field effect transistor: Role of macroscopic orientation. Organic Electronics, 2017, 43, 240-246.                                                            | 1.4 | 56        |
| 9  | Substituent effect in direct ring functionalized squaraine dyes on near infra-red sensitization of nanocrystalline TiO2 for molecular photovoltaics. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 214, 269-275.   | 2.0 | 55        |
| 10 | Investigation of bi-ionic contribution for the enhancement of bending actuation in polypyrrole film.<br>Sensors and Actuators B: Chemical, 2003, 89, 48-52.                                                                         | 4.0 | 50        |
| 11 | Alkyl and fluoro-alkyl substituted squaraine dyes: A prospective approach towards development of novel NIR sensitizers. Thin Solid Films, 2010, 519, 1066-1071.                                                                     | 0.8 | 48        |
| 12 | Enhancement of carrier mobility along with anisotropic transport in non-regiocontrolled poly<br>(3-hexylthiophene) films processed by floating film transfer method. Organic Electronics, 2016, 38,<br>115-120.                     | 1.4 | 48        |
| 13 | Air-stable vapor phase sensing of ammonia in sub-threshold regime of<br>poly(2,5-bis(3-tetradecylthiophen-2yl)thieno(3,2-b)thiophene) based polymer thin-film transistor.<br>Sensors and Actuators B: Chemical, 2017, 246, 243-251. | 4.0 | 46        |
| 14 | Cyclic Step-voltammetric Analysis of Cation-driven and Anion-driven Actuation in Polypyrrole Films.<br>Japanese Journal of Applied Physics, 2002, 41, 7532-7536.                                                                    | 0.8 | 42        |
| 15 | Rapid Formation and Macroscopic Selfâ€Assembly of Liquidâ€Crystalline, Highâ€Mobility, Semiconducting<br>Thienothiophene. Advanced Materials Interfaces, 2018, 5, 1700875.                                                          | 1.9 | 41        |
| 16 | Anisotropic charge transport in highly oriented films of semiconducting polymer prepared by ribbon-shaped floating film. Applied Physics Letters, 2018, 112, .                                                                      | 1.5 | 40        |
| 17 | Transparent conductive oxide layer-less dye-sensitized solar cells consisting of floating electrode<br>with gradient TiOx blocking layer. Applied Physics Letters, 2009, 94, .                                                      | 1.5 | 38        |
| 18 | Influence of backbone structure on orientation of conjugated polymers in the dynamic casting of thin floating-films. Thin Solid Films, 2016, 619, 125-130.                                                                          | 0.8 | 35        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mechanism of Photocarrier Generation and Transport in Poly(3-Alkylthiophene) Films. Japanese<br>Journal of Applied Physics, 2000, 39, 6309-6315.                                                             | 0.8 | 34        |
| 20 | Controlling Factors for Orientation of Conjugated Polymer Films in Dynamic Floating-Film Transfer<br>Method. Journal of Nanoscience and Nanotechnology, 2017, 17, 1915-1922.                                 | 0.9 | 34        |
| 21 | Probing mechanism of dye double layer formation from dye-cocktail solution for dye-sensitized solar cells. Thin Solid Films, 2010, 519, 1087-1092.                                                           | 0.8 | 33        |
| 22 | Huge suppression of charge recombination in P3HT–ZnO organic–inorganic hybrid solar cells by<br>locating dyes at the ZnO/P3HT interfaces. Physical Chemistry Chemical Physics, 2013, 15, 14370.              | 1.3 | 33        |
| 23 | Simple Metal-Free Dyes Derived from Triphenylamine for DSSC: A Comparative Study of Two Different<br>Anchoring Group. Electrochimica Acta, 2015, 169, 256-263.                                               | 2.6 | 30        |
| 24 | Layer-by-layer coating of oriented conjugated polymer films towards anisotropic electronics.<br>Synthetic Metals, 2017, 227, 29-36.                                                                          | 2.1 | 30        |
| 25 | Facile fabrication of large area oriented conjugated polymer films by ribbon-shaped FTM and its implication on anisotropic charge transport. Organic Electronics, 2019, 65, 1-7.                             | 1.4 | 30        |
| 26 | A comparative study of Al and LiF:Al interfaces with poly (3-hexylthiophene) using bias dependent photoluminescence technique. Organic Electronics, 2008, 9, 790-796.                                        | 1.4 | 28        |
| 27 | Development of an amperometric biosensor based on a redox-mediator-doped polypyrrole film. Journal of Applied Polymer Science, 2004, 93, 927-933.                                                            | 1.3 | 27        |
| 28 | Investigation and Control of Charge Transport Anisotropy in Highly Oriented Friction-Transferred<br>Polythiophene Thin Films. ACS Applied Materials & Interfaces, 2020, 12, 11876-11883.                     | 4.0 | 25        |
| 29 | Interplay of Orientation and Blending: Synergistic Enhancement of Field Effect Mobility in<br>Thiophene-Based Conjugated Polymers. Journal of Physical Chemistry C, 2017, 121, 11184-11193.                  | 1.5 | 24        |
| 30 | Probing TiO2/Dye Interface in Dye Sensitized Solar Cells Using Surface Potential Measurement. Applied<br>Physics Express, 2008, 1, 105001.                                                                   | 1.1 | 23        |
| 31 | Effects of regioregularity on carrier transport in poly(alkylthiophene) films with various alkyl chain<br>lengths. Current Applied Physics, 2001, 1, 90-97.                                                  | 1.1 | 22        |
| 32 | Influence of nature of surface dipoles on observed photovoltage in dye-sensitized solar cells as probed by surface potential measurement. Organic Electronics, 2010, 11, 419-426.                            | 1.4 | 22        |
| 33 | Investigation of the minimum driving force for dye regeneration utilizing model squaraine dyes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 22672-22682.                       | 5.2 | 21        |
| 34 | Preparation of Double Dye-Layer Structure of Dye-Sensitized Solar Cells from Cocktail Solutions for<br>Harvesting Light in Wide Range of Wavelengths. Japanese Journal of Applied Physics, 2009, 48, 020213. | 0.8 | 20        |
| 35 | Effect of nature of anchoring groups on photosensitization behavior in unsymmetrical squaraine<br>dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 273, 1-7.                             | 2.0 | 20        |
| 36 | Photophysical characterization and BSA interaction of the direct ring carboxy functionalized unsymmetrical NIR cyanine dyes. Dyes and Pigments, 2017, 140, 6-13.                                             | 2.0 | 20        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Enhanced performance of ZnO based perovskite solar cells by Nb2O5 surface passivation. Organic Electronics, 2018, 62, 615-620.                                                                                           | 1.4 | 20        |
| 38 | Implication of Molecular Weight on Optical and Charge Transport Anisotropy in PQT-C12 Films Fabricated by Dynamic FTM. ACS Applied Materials & amp; Interfaces, 2019, 11, 28088-28095.                                   | 4.0 | 20        |
| 39 | Novel unsymmetrical squaraine dye bearing cyanoacrylic acid anchoring group and its photosensitization behavior. Tetrahedron Letters, 2012, 53, 5437-5440.                                                               | 0.7 | 19        |
| 40 | Effect of extended π-conjugation on photovoltaic performance of dye sensitized solar cells based on<br>unsymmetrical squaraine dyes. Tetrahedron, 2013, 69, 2633-2639.                                                   | 1.0 | 18        |
| 41 | Combined theoretical and experimental approaches for development of squaraine dyes with small energy barrier for electron injection. Solar Energy Materials and Solar Cells, 2017, 159, 625-632.                         | 3.0 | 18        |
| 42 | Extreme Orientational Uniformity in Large-Area Floating Films of Semiconducting Polymers for Their Application in Flexible Electronics. ACS Applied Materials & amp; Interfaces, 2021, 13, 38534-38543.                  | 4.0 | 18        |
| 43 | Electrophoretic deposition onto an insulator for thin film preparation toward electronic device fabrication. Applied Physics Letters, 2012, 101, .                                                                       | 1.5 | 17        |
| 44 | Transparent conductive oxideâ€less back contact dyeâ€sensitized solar cells using cobalt electrolyte.<br>Progress in Photovoltaics: Research and Applications, 2015, 23, 1100-1109.                                      | 4.4 | 17        |
| 45 | First principles analysis of oxygen vacancy formation and migration in<br>Sr <sub>2</sub> BMoO <sub>6</sub> (BA= Mg, Co, Ni). RSC Advances, 2016, 6, 31968-31975.                                                        | 1.7 | 15        |
| 46 | Synthesis and Photophysical Characterization of Unsymmetrical Squaraine Dyes for Dye-Sensitized<br>Solar Cells Utilizing Cobalt Electrolytes. ACS Applied Energy Materials, 2018, 1, 4545-4553.                          | 2.5 | 15        |
| 47 | Optoelectrical anisotropy in graphene oxide supported polythiophene thin films fabricated by floating film transfer. Carbon, 2019, 147, 252-261.                                                                         | 5.4 | 15        |
| 48 | Wide wavelength photon harvesting in dye-sensitized solar cells utilizing cobalt complex redox<br>electrolyte: Implication of surface passivation. Solar Energy Materials and Solar Cells, 2019, 195,<br>122-133.        | 3.0 | 15        |
| 49 | Study To Observe the Effect of PbI <sub>2</sub> Passivation on Carbon Electrode for Perovskite Solar<br>Cells by Quartz Crystal Microbalance System. ACS Sustainable Chemistry and Engineering, 2018, 6,<br>10221-10228. | 3.2 | 14        |
| 50 | Ordered arrangement of F4TCNQ anions in three-dimensionally oriented P3HT thin films. Scientific Reports, 2020, 10, 20020.                                                                                               | 1.6 | 14        |
| 51 | Characterization of Depletion Layer using Photoluminescence Technique. Applied Physics Express, 0, 1, 021801.                                                                                                            | 1.1 | 13        |
| 52 | Oxygen vacancy formation and migration in double perovskite Sr <sub>2</sub> CrMoO <sub>6</sub> : a<br>first-principles study. RSC Advances, 2016, 6, 43034-43040.                                                        | 1.7 | 13        |
| 53 | Role of device architecture and AlOX interlayer in organic Schottky diodes and their interpretation by analytical modeling. Journal of Applied Physics, 2019, 126, .                                                     | 1.1 | 11        |
| 54 | Recent progress in the macroscopic orientation of semiconducting polymers by floating film transfer method. Japanese Journal of Applied Physics, 2022, 61, SB0801.                                                       | 0.8 | 11        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Structure property correlation: electrochemomechanical deformation in polypyrrole films. Thin Solid Films, 2003, 438-439, 206-211.                                                                                     | 0.8 | 10        |
| 56 | Controlling the processable ZnO and polythiophene interface for dye-sensitized thin film organic solar cells. Thin Solid Films, 2013, 536, 302-307.                                                                    | 0.8 | 10        |
| 57 | Efficient near infrared fluorescence detection of elastase enzyme using peptide-bound unsymmetrical squaraine dye. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4024-4029.                                    | 1.0 | 10        |
| 58 | Fine tuning the structure of unsymmetrical squaraine dyes towards the development of efficient dye-sensitized solar cells. , 2011, , .                                                                                 |     | 9         |
| 59 | Enhancing the performance of transparent conductive oxide-less back contact dye-sensitized solar cells by facile diffusion of cobalt species through TiO <sub>2</sub> nanopores. RSC Advances, 2016, 6, 33353-33360.   | 1.7 | 9         |
| 60 | Molecular orientation and anisotropic charge transport in the large area thin films of regioregular<br>Poly(3-alkylthiophenes) fabricated by ribbon-shaped FTM. Organic Electronics, 2020, 81, 105687.                 | 1.4 | 9         |
| 61 | Transparent conductive oxideâ€less threeâ€dimensional cylindrical dyeâ€sensitized solar cell fabricated with flexible metal mesh electrode. Progress in Photovoltaics: Research and Applications, 2013, 21, 517-524.   | 4.4 | 8         |
| 62 | Synthesis, characterizations and photo-physical properties of novel lanthanum(III) complexes. Journal of Taibah University for Science, 2018, 12, 796-808.                                                             | 1.1 | 8         |
| 63 | Synthesis, photophysical characterization and dye adsorption behavior in unsymmetrical squaraine<br>dyes with varying anchoring groups. Journal of Photochemistry and Photobiology A: Chemistry, 2020,<br>394, 112467. | 2.0 | 8         |
| 64 | Implication of color of sensitizing dyes on transparency and efficiency of transparent dye-sensitized solar cells. Solar Energy, 2021, 225, 950-960.                                                                   | 2.9 | 8         |
| 65 | Transparent Conductive Oxide-Less Dye-Sensitized Solar Cells Consisting of Dye-Cocktail and Cobalt<br>Based Redox Electrolyte. Journal of Nanoscience and Nanotechnology, 2017, 17, 4748-4754.                         | 0.9 | 7         |
| 66 | 2D positional profiling of orientation and thickness uniformity in the semiconducting polymers thin films. Organic Electronics, 2019, 68, 221-229.                                                                     | 1.4 | 7         |
| 67 | Parametric optimization of back-contact T-C-O-free dye-sensitized solar cells employing indoline and porphyrin sensitizer based on cobalt redox electrolyte. Solar Energy, 2020, 208, 411-418.                         | 2.9 | 7         |
| 68 | Far-red sensitizing octatrifluorobutoxy phosphorous triazatetrabenzocorrole: Synthesis, spectral characterization and aggregation studies. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 289, 53-59.  | 2.0 | 6         |
| 69 | Photophysical Characterization and BSA Interaction of Direct Ring Carboxy Functionalized Symmetrical squaraine Dyes. Journal of Physics: Conference Series, 2017, 924, 012006.                                         | 0.3 | 6         |
| 70 | PCPDTBT copolymer based high performance organic phototransistors utilizing improved chain alignment. Optical Materials, 2021, 113, 110886.                                                                            | 1.7 | 6         |
| 71 | Assisted alignment of conjugated polymers in floating film transfer method using polymer blend. Thin<br>Solid Films, 2021, 734, 138814.                                                                                | 0.8 | 6         |
| 72 | Investigating the Role of Dye Dipole on Open Circuit Voltage in Solid-State Dye-Sensitized Solar Cells.<br>Japanese Journal of Applied Physics, 2011, 50, 06GF08.                                                      | 0.8 | 6         |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Unravelling the bottleneck of phosphonic acid anchoring groups aiming toward enhancing the stability and efficiency of mesoscopic solar cells. Frontiers of Chemical Science and Engineering, 2022, 16, 1060-1078.                         | 2.3 | 6         |
| 74 | Fabrication and characterization of coil type transparent conductive oxide-less cylindrical dye-sensitized solar cells. RSC Advances, 2014, 4, 22959-22963.                                                                                | 1.7 | 5         |
| 75 | Relationship between diffusion of Co <sup>3+</sup> /Co <sup>2+</sup> redox species in nanopores of porous titania stained with dye molecules, dye molecular structures, and photovoltaic performances. RSC Advances, 2015, 5, 83725-83731. | 1.7 | 5         |
| 76 | Synthesis and Optoelectrical Characterization of Novel Squaraine Dyes Derived from Benzothiophene and Benzofuran. ACS Omega, 2018, 3, 13919-13927.                                                                                         | 1.6 | 5         |
| 77 | Solvent-Assisted Friction Transfer Method for Fabricating Large-Area Thin Films of Semiconducting<br>Polymers with Edge-On Oriented Extended Backbones. ACS Applied Materials & Interfaces, 2020, 12,<br>55033-55043.                      | 4.0 | 5         |
| 78 | Investigating the Role of Dye Dipole on Open Circuit Voltage in Solid-State Dye-Sensitized Solar Cells.<br>Japanese Journal of Applied Physics, 2011, 50, 06GF08.                                                                          | 0.8 | 4         |
| 79 | Nonisothermal curing kinetics of epoxy resin composite utilizing Ga (III) xanthate as a latent catalyst.<br>Journal of Applied Polymer Science, 2015, 132, .                                                                               | 1.3 | 4         |
| 80 | Design of Far-Red Sensitizing Squaraine Dyes Aiming Towards the Fine Tuning of Dye Molecular<br>Structure. Journal of Nanoscience and Nanotechnology, 2016, 16, 3282-3288.                                                                 | 0.9 | 4         |
| 81 | Reduced contact resistance in organic field-effect transistors fabricated using floating film transfer<br>method. Journal of Materials Science: Materials in Electronics, 2020, 31, 15277-15285.                                           | 1.1 | 4         |
| 82 | Boosting the Efficiency of Low-Cost T-C-O-Less Dye-Sensitized Solar Cells Employing Nanoparticle Spacers and Cobalt Complex Redox Shuttle. ACS Applied Electronic Materials, 2020, 2, 2721-2729.                                           | 2.0 | 4         |
| 83 | Charge transfer and catalytic properties of various PEDOTs as Pt-free counter electrodes for dye-sensitized solar cells. Japanese Journal of Applied Physics, 2022, 61, SB1010.                                                            | 0.8 | 4         |
| 84 | Solution processable thin film organic photovoltaic cells based on far red sensitive soluble squaraine dyes. Thin Solid Films, 2012, 522, 401-406.                                                                                         | 0.8 | 3         |
| 85 | Single-step fabrication of all-solid dye-sensitized solar cells using solution-processable precursor.<br>Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1846-1850.                                               | 0.8 | 3         |
| 86 | P3HT Nanofibrils Thin-Film Transistors by Adsorbing Deposition in Suspension. Materials, 2019, 12, 3643.                                                                                                                                   | 1.3 | 3         |
| 87 | Bifacial dye-sensitized solar cells utilizing green-colored NIR sensitive unsymmetrical squaraine dye.<br>Japanese Journal of Applied Physics, 2022, 61, SB1005.                                                                           | 0.8 | 3         |
| 88 | Transparent conductive oxide-less back contact dye-sensitized solar cells using flat titanium sheet with microholes for photoanode fabrication. Journal of Photonics for Energy, 2017, 7, 015501.                                          | 0.8 | 2         |
| 89 | Implications of doping and depletion on the switching characteristics in polymer-based organic field-effect transistors. Organic Electronics, 2018, 56, 152-158.                                                                           | 1.4 | 2         |
| 90 | 2D positional mapping of casting condition driven microstructural distribution in organic thin films.<br>Japanese Journal of Applied Physics, 2020, 59, SCCA06.                                                                            | 0.8 | 2         |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|
| 91  | Development of Highâ€Sensitivity Poly(2,7â€(9,9â€dioctylfluorene)―alt â€5,5â€(4′,7′â€diâ€2â€thieny                                                                                                        |     | ETQq1 1 0.78 |
|     | Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100185.                                                                                                                                        | 1.2 | 2            |
| 92  | Computational molecular design of NIR dyes with varying anchoring groups for improving the efficiency and stability of dye-sensitized solar cells. Japanese Journal of Applied Physics, 2022, 61, SB1021. | 0.8 | 2            |
| 93  | Highly Sensitive Organic Phototransistors Fabricated from PCPDTBT:PCBM Blend. Journal of Physics:<br>Conference Series, 2021, 2070, 012040.                                                               | 0.3 | 1            |
| 94  | Aiming at High Efficiency Dye-Sensitized Solar Cells-From the View Point of Photoconversion<br>Interface Electrochemistry, 2011, 79, 761-767.                                                             | 0.6 | 0            |
| 95  | Multiple electron injection from dyes to titania layer for high efficiency-dye-sensitized solar cells. ,<br>2011, , .                                                                                     |     | 0            |
| 96  | Transparent conductive oxide-less back contact dye-sensitized solar cells using Zinc porphyrin dye employing cobalt complex redox shuttle. , 2014, , .                                                    |     | 0            |
| 97  | All-solid Sn/Pb halide perovskite sensitized solar cells. , 2014, , .                                                                                                                                     |     | 0            |
| 98  | Comparative analysis of metal diffusion effects in polymer films coated with spin coating and floating film transfer techniques. Synthetic Metals, 2020, 264, 116378.                                     | 2.1 | 0            |
| 99  | Investigation of Orientation in the Thin Films of Conjugated Polymer and NIR Dye Blends Fabricated by Friction Transfer Method. , 2021, , .                                                               |     | 0            |
| 100 | Probing the metal/conducting polymer interface and implications of the metal diffusion in two-terminal sandwich devices. Synthetic Metals, 2021, 278, 116797.                                             | 2.1 | 0            |
| 101 | Dye Sensitized Solar Cells Based on Novel Far Red Sensitizing Unsymmetrical Squaraine Dye Containing<br>Pyrroloquinoline Moiety. Japanese Journal of Applied Physics, 2012, 51, 10NE12.                   | 0.8 | Ο            |
| 102 | Prospects and Challenges with Dye-Sensitized Solar Cells utilizing Far-red Sensitive Dyes and Cobalt<br>Complex Redox Electrolyte. , 0, , .                                                               |     | 0            |
| 103 | Orientation of Semiconducting Polymers via Swift Printing and Drawing Techniques for High<br>Performance Organic Electronic Devices. , 2020, , .                                                          |     | 0            |
| 104 | Effect of electrolyte for back contact transparent conducting oxide-less dye-sensitized solar cells:<br>iodine versus cobalt. Journal of Photonics for Energy, 2020, 10, .                                | 0.8 | 0            |