Warren Finlay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/148611/publications.pdf

Version: 2024-02-01

		87723	1	28067
151	4,644 citations	38		60
papers	citations	h-index		g-index
156	156	156		3175
130	130	130		31/3
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. International Journal of Pharmaceutics, 2004, 269, 457-467.	2.6	245
2	Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. Journal of Controlled Release, 2011, 150, 49-55.	4.8	154
3	Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. International Journal of Pharmaceutics, 2006, 319, 155-161.	2.6	136
4	Deagglomeration of dry powder pharmaceutical aerosols. International Journal of Pharmaceutics, 2002, 248, 39-50.	2.6	128
5	Experimental measurements and computational modeling of the flow field in an idealized human oropharynx. Experiments in Fluids, 2003, 35, 70-84.	1.1	126
6	Nebulizers for drug delivery to the lungs. Expert Opinion on Drug Delivery, 2015, 12, 889-900.	2.4	125
7	Production of Inhalation Phage Powders Using Spray Freeze Drying and Spray Drying Techniques for Treatment of Respiratory Infections. Pharmaceutical Research, 2016, 33, 1486-1496.	1.7	106
8	Spray-freeze-dried liposomal ciprofloxacin powder for inhaled aerosol drug delivery. International Journal of Pharmaceutics, 2005, 305, 180-185.	2.6	96
9	Instability and transition in curved channel flow. Journal of Fluid Mechanics, 1988, 194, 417.	1.4	93
10	<i>In Vivo–In Vitro</i> Correlations: Predicting Pulmonary Drug Deposition from Pharmaceutical Aerosols. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2010, 23, S-59-S-69.	0.7	93
11	In VitroMonodisperse Aerosol Deposition in a Mouth and Throat with Six Different Inhalation Devices. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2001, 14, 361-367.	1.2	92
12	<i>In Vivo–In Vitro</i> Comparison of Deposition in Three Mouth–Throat Models with Qvar [®] and Turbuhaler [®] Inhalers. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2007, 20, 227-235.	1.2	92
13	Recent Advances in Predictive Understanding of Respiratory Tract Deposition. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2008, 21, 189-206.	0.7	92
14	Aerosol Phage Therapy Efficacy in Burkholderia cepacia Complex Respiratory Infections. Antimicrobial Agents and Chemotherapy, 2014, 58, 4005-4013.	1.4	84
15	Effects of storage conditions on the stability of spray dried, inhalable bacteriophage powders. International Journal of Pharmaceutics, 2017, 521, 141-149.	2.6	73
16	Lung Delivery of Aerosolized Dextran. American Journal of Respiratory and Critical Care Medicine, 2000, 161, 91-97.	2.5	71
17	Anti-Tuberculosis Bacteriophage D29 Delivery with a Vibrating Mesh Nebulizer, Jet Nebulizer, and Soft Mist Inhaler. Pharmaceutical Research, 2017, 34, 2084-2096.	1.7	71
18	The flow inside an idealised form of the human extra-thoracic airway. Experiments in Fluids, 2004, 37, 673-689.	1.1	63

#	Article	IF	CITATIONS
19	Estimating the Type of Hygroscopic Behavior Exhibited by Aqueous Droplets. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 1998, 11, 221-229.	1.2	62
20	Measurement of the Effect of Cartilaginous Rings on Particle Deposition in a Proximal Lung Bifurcation Model. Aerosol Science and Technology, 2005, 39, 394-399.	1.5	62
21	Toward Modern Inhalational Bacteriophage Therapy: Nebulization of Bacteriophages of <i>Burkholderia cepacia</i> Complex. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2008, 21, 351-360.	0.7	60
22	The use of computational fluid dynamics in inhaler design. Expert Opinion on Drug Delivery, 2013, 10, 307-323.	2.4	60
23	A bifurcation study of viscous flow through a rotating curved duct. Journal of Fluid Mechanics, 1994, 262, 353-375.	1.4	59
24	Effect of storage temperature on the stability of spray dried bacteriophage powders. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 213-222.	2.0	57
25	Use of a Fundamental Approach to Spray-Drying Formulation Design to Facilitate the Development of Multi-Component Dry Powder Aerosols for Respiratory Drug Delivery. Pharmaceutical Research, 2014, 31, 449-465.	1.7	56
26	In Vitro Aerosol Delivery and Regional Airway Surface Liquid Concentration of a Liposomal Cationic Peptide. Journal of Pharmaceutical Sciences, 2001, 90, 1647-1657.	1.6	54
27	Inertial sizing of aerosol inhaled from two dry powder inhalers with realistic breath patterns versus constant flow rates. International Journal of Pharmaceutics, 2000, 210, 83-95.	2.6	52
28	Improving Prediction of Aerosol Deposition in an Idealized Mouth Using Large-Eddy Simulation. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2006, 19, 290-300.	1.2	52
29	Nebulization of niosomal all-trans-retinoic acid: an inexpensive alternative to conventional liposomes. International Journal of Pharmaceutics, 2002, 241, 311-317.	2.6	49
30	Prophylaxis of Mycobacterium tuberculosis H37Rv Infection in a Preclinical Mouse Model via Inhalation of Nebulized Bacteriophage D29. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	48
31	Regional deposition of inhaled hygroscopic aerosols: in vivo SPECT compared with mathematical modeling. Journal of Applied Physiology, 1996, 81, 374-383.	1.2	46
32	A facile method of delivery of liposomes by nebulization. Journal of Controlled Release, 2002, 84, 69-78.	4.8	44
33	Simulation of Particle Deposition in an Idealized Mouth with Different Small Diameter Inlets. Aerosol Science and Technology, 2003, 37, 924-932.	1.5	44
34	Experimental Measurement and Numerical Study of Particle Deposition in Highly Idealized Mouth-Throat Models. Aerosol Science and Technology, 2006, 40, 361-372.	1.5	42
35	A novel approach to the pulmonary delivery of liposomes in dry powder form to eliminate the deleterious effects of milling. Journal of Pharmaceutical Sciences, 2002, 91, 482-491.	1.6	41
36	MRI Measurement of Regional Lung Deposition in Mice Exposed Nose-Only to Nebulized Superparamagnetic Iron Oxide Nanoparticles. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2008, 21, 335-342.	0.7	41

#	Article	IF	CITATIONS
37	An Idealized Child Throat that Mimics Average Pediatric Oropharyngeal Deposition. Aerosol Science and Technology, 2012, 46, i-iv.	1.5	40
38	The Effect of Humidity on the Size of Particles Delivered from Metered-Dose Inhalers. Aerosol Science and Technology, 2005, 39, 283-289.	1.5	38
39	In Vitro Comparison of Beclomethasone and Salbutamol Metered-Dose Inhaler Aerosols Inhaled During Pediatric Tidal Breathing From Four Valved Holding Chambers. Chest, 1998, 114, 1676-1680.	0.4	38
40	Comparison of In Vitro Deposition of Pharmaceutical Aerosols in an Idealized Child Throat with In Vivo Deposition in the Upper Respiratory Tract of Children. Pharmaceutical Research, 2014, 31, 1525-1535.	1.7	37
41	Mapping PET-measured triamcinolone acetonide (TAA) aerosol distribution into deposition by airway generation. International Journal of Pharmaceutics, 2000, 199, 7-16.	2.6	36
42	An In vitro Study on the Deposition of Micrometer-Sized Particles in the Extrathoracic Airways of Adults During Tidal Oral Breathing. Annals of Biomedical Engineering, 2013, 41, 979-989.	1.3	35
43	Amorphous pullulan trehalose microparticle platform for respiratory delivery. International Journal of Pharmaceutics, 2019, 563, 156-168.	2.6	35
44	Transition to oscillatory motion in rotating channel flow. Journal of Fluid Mechanics, 1990, 215, 209.	1.4	34
45	The Effect of Breathing Pattern on Nebulizer Drug Delivery. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2003, 16, 325-339.	1.2	34
46	Asymmetrical Aerosol Deposition in an Idealized Mouth with a DPI Mouthpiece Inlet. Aerosol Science and Technology, 2008, 42, 10-17.	1.5	34
47	Pediatric <i>In Vitro</i> and <i>In Silico</i> Models of Deposition via Oral and Nasal Inhalation. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2014, 27, 149-169.	0.7	33
48	An In Vitro Method for Determining Regional Dosages Delivered by Jet Nebulizers. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 1994, 7, 325-344.	1.2	31
49	Wavenumber selection and irregularity of spatially developing nonlinear Dean and Görtler vortices. Journal of Fluid Mechanics, 1994, 264, 1-40.	1.4	31
50	In Vitro Effect of a Holding Chamber on the Mouth-Throat Deposition of QVAR® (Hydrofluoroalkane-Beclomethasone Dipropionate). Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2002, 15, 379-385.	1.2	31
51	Deposition of Inhaled Ultrafine Aerosols in Replicas of Nasal Airways of Infants. Aerosol Science and Technology, 2010, 44, 741-752.	1.5	31
52	Jet nebulization of bacteriophages with different tail morphologies – Structural effects. International Journal of Pharmaceutics, 2019, 554, 322-326.	2.6	31
53	On the particle formation of leucine in spray drying of inhalable microparticles. International Journal of Pharmaceutics, 2021, 592, 120102.	2.6	31
54	Using MRI to Measure Aerosol Deposition. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2012, 25, 55-62.	0.7	30

#	Article	IF	CITATIONS
55	Deposition modeling of hygroscopic saline aerosols in the human respiratory tract: Comparison between air and helium–oxygen as carrier gases. Journal of Aerosol Science, 2013, 64, 81-93.	1.8	30
56	Regional deposition of nasal sprays in adults: A wide ranging computational study. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e2968.	1.0	30
57	<i>In Vitro</i> Investigation of the Effect of Ambient Humidity on Regional Delivered Dose with Solution and Suspension MDIs. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2013, 26, 215-222.	0.7	29
58	Delivery of liposomes in dry powder form: aerodynamic dispersion properties. European Journal of Pharmaceutical Sciences, 2003, 20, 459-467.	1.9	28
59	Deposition of Particles by a Confined Impinging Jet onto a Flat Surface at Re=104. Aerosol Science and Technology, 2006, 40, 147-156.	1.5	28
60	A general, algebraic equation for predicting total respiratory tract deposition of micrometer-sized aerosol particles in humans. Journal of Aerosol Science, 2007, 38, 246-253.	1.8	28
61	Measurements of total aerosol deposition in intrathoracic conducting airway replicas of children. Journal of Aerosol Science, 2014, 73, 39-47.	1.8	28
62	Experimental Measurements of Particle Deposition in Three Proximal Lung Bifurcation Models with an Idealized Mouth-Throat. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2005, 18, 460-473.	1,2	26
63	Splitting, merging and wavelength selection of vortices in curved and/or rotating channel flow due to Eckhaus instability. Journal of Fluid Mechanics Digital Archive, 1991, 228, 661.	0.6	25
64	Dry powder inhalers. , 2001, , 221-276.		25
65	Deposition of micrometer-sized aerosol particles in neonatal nasal airway replicas. Aerosol Science and Technology, 2018, 52, 407-419.	1.5	25
66	In vitro assessment of an idealized nose for nasal spray testing: Comparison with regional deposition in realistic nasal replicas. International Journal of Pharmaceutics, 2020, 582, 119341.	2.6	25
67	In vitro evaluation of nebulization properties, antimicrobial activity, and regional airway surface liquid concentration of liposomal polymyxin B sulfate. Pharmaceutical Research, 2003, 20, 442-447.	1.7	24
68	Enhanced deposition of high aspect ratio aerosols in small airway bifurcations using magnetic field alignment. Journal of Aerosol Science, 2008, 39, 679-690.	1.8	24
69	Comparison of pulsed versus continuous oxygen delivery using realistic adult nasal airway replicas. International Journal of COPD, 2017, Volume 12, 2559-2571.	0.9	24
70	Multi-Solvent Microdroplet Evaporation: Modeling and Measurement of Spray-Drying Kinetics with Inhalable Pharmaceutics. Pharmaceutical Research, 2019, 36, 100.	1.7	23
71	Atmospheric Spray Freeze Drying of Sugar Solution With Phage D29. Frontiers in Microbiology, 2019, 10, 488.	1.5	23
72	Understanding pressurized metered dose inhaler performance. Expert Opinion on Drug Delivery, 2015, 12, 901-916.	2.4	22

#	Article	IF	Citations
73	An idealized geometry that mimics average nasal spray deposition in adults: A computational study. Computers in Biology and Medicine, 2019, 107, 206-217.	3.9	22
74	Particle Size Distributions. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2020, 33, 178-180.	0.7	22
75	In Vitro Comparison of Salbutamol Hydrofluoroalkane (Airomir) Metered Dose Inhaler Aerosols Inhaled during Pediatric Tidal Breathing from Five Valved Holding Chambers. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 1999, 12, 285-291.	1.2	20
76	Effect of Induced Charge on Deposition of Uniformly Charged Particles in a Pediatric Oral-Extrathoracic Airway. Aerosol Science and Technology, 2014, 48, 508-514.	1.5	20
77	Manufacturing and Device Options for the Delivery of Biotherapeutics. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2014, 27, 315-328.	0.7	20
78	Examining the ability of empirical correlations to predict subject specific <i>in vivo</i> extrathoracic aerosol deposition during tidal breathing. Aerosol Science and Technology, 2017, 51, 363-376.	1.5	20
79	Modeling of Aerosol Deposition with Interface Devices. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2007, 20, S19-S28.	1.2	18
80	The effect of device resistance and inhalation flow rate on the lung deposition of orally inhaled mannitol dry powder. International Journal of Pharmaceutics, 2016, 513, 294-301.	2.6	18
81	Perturbation expansion and weakly nonlinear analysis for twoâ€dimensional vortices in curved or rotating channels. Physics of Fluids A, Fluid Dynamics, 1989, 1, 854-860.	1.6	17
82	PREDICTING REGIONAL LUNG DOSAGES OF A NEBULIZED SUSPENSION: PULMICORT® (BUDESONIDE). Particulate Science and Technology, 1997, 15, 243-251.	1.1	17
83	Validating Deposition Models in Disease: What Is Needed?. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2000, 13, 381-385.	1.2	17
84	In Vitro–In Silico Comparison of Pulsed Oxygen Delivery From Portable Oxygen Concentrators Versus Continuous Flow Oxygen Delivery. Respiratory Care, 2019, 64, 117-129.	0.8	17
85	Transition to turbulence in a rotating channel. Journal of Fluid Mechanics, 1992, 237, 73-99.	1.4	16
86	Models of deposition, pharmacokinetics, and intersubject variability in respiratory drug delivery. Expert Opinion on Drug Delivery, 2018, 15, 1175-1188.	2.4	16
87	Transitions toward turbulence in a curved channel. Physics of Fluids A, Fluid Dynamics, 1991, 3, 106-114.	1.6	15
88	Liquid Atomizing: Nebulizing and Other Methods of Producing Aerosols. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2006, 19, 28-35.	1.2	15
89	An Exploration of Factors Affecting <i>In Vitro</i> Deposition of Pharmaceutical Aerosols in the Alberta Idealized Throat. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2019, 32, 405-417.	0.7	15
90	Particle deposition in the respiratory tract. , 2001, , 119-174.		14

#	Article	IF	Citations
91	A correlation equation for the mass median aerodynamic diameter of the aerosol emitted by solution metered dose inhalers. International Journal of Pharmaceutics, 2014, 465, 18-24.	2.6	14
92	High flow nasal cannula: Influence of gas type and flow rate on airway pressure and CO2 clearance in adult nasal airway replicas. Clinical Biomechanics, 2019, 65, 73-80.	0.5	14
93	Trileucine as a dispersibility enhancer of spray-dried inhalable microparticles. Journal of Controlled Release, 2021, 336, 522-536.	4.8	14
94	Simulation of muscle and adipose tissue deformation in the passive human pharynx. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 780-788.	0.9	13
95	Humidity affects the morphology of particles emitted from beclomethasone dipropionate pressurized metered dose inhalers. International Journal of Pharmaceutics, 2017, 520, 207-215.	2.6	13
96	Model Calculations of Regional Deposition and Disposition for Single Doses of Inhaled Liposomal and Dry Powder Ciprofloxacin. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2018, 31, 49-60.	0.7	13
97	Use of Extrathoracic Deposition Models for Patient-Specific Dose Estimation during Inhaler Design. Current Pharmaceutical Design, 2015, 21, 3984-3992.	0.9	12
98	Validation of airway resistance models for predicting pressure loss through anatomically realistic conducting airway replicas of adults and children. Journal of Biomechanics, 2015, 48, 1988-1996.	0.9	11
99	Alignment of Magnetite-Loaded High Aspect Ratio Aerosol Drug Particles with Magnetic Fields. Aerosol Science and Technology, 2008, 42, 295-298.	1.5	10
100	Powder aerosol delivery through nasal high-flow system: In vitro feasibility and influence of process conditions. International Journal of Pharmaceutics, 2017, 533, 187-197.	2.6	10
101	Improved prediction of intersubject variability in extrathoracic aerosol deposition using algebraic correlations. Aerosol Science and Technology, 2017, 51, 667-673.	1.5	10
102	Size manipulation of hygroscopic saline droplets: Application to respiratory drug delivery. International Journal of Heat and Mass Transfer, 2013, 67, 690-695.	2.5	9
103	An <i>In Vitro</i> Examination of the Effects of Altitude on Dry Powder Inhaler Performance. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2018, 31, 221-236.	0.7	9
104	Experimental evaluation of pressure drop for flows of air and heliox through upper and central conducting airway replicas of 4- to 8-year-old children. Journal of Biomechanics, 2019, 82, 134-141.	0.9	9
105	Correlation of high flow nasal cannula outlet area with gas clearance and pressure in adult upper airway replicas. Clinical Biomechanics, 2019, 66, 66-73.	0.5	9
106	Combined in Vitro-in Silico Approach to Predict Deposition and Pharmacokinetics of Budesonide Dry Powder Inhalers. Pharmaceutical Research, 2020, 37, 209.	1.7	9
107	Mapping of PET-measured aerosol deposition: a comparison study. Journal of Aerosol Science, 2005, 36, 1157-1176.	1.8	8
108	Pilot Study of Inhaled Aerosols Targeted via Magnetic Alignment of High Aspect Ratio Particles in Rabbits. Journal of Nanomaterials, 2011, 2011, 1-7.	1.5	8

#	Article	IF	Citations
109	Simulation of Enhanced Deposition Due to Magnetic Field Alignment of Ellipsoidal Particles in a Lung Bifurcation. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2013, 26, 31-40.	0.7	8
110	An idealized branching airway geometry that mimics average aerosol deposition in pediatric central conducting airways. Journal of Aerosol Science, 2015, 85, 10-16.	1.8	8
111	Aerosol drug delivery to the lungs during nasal high flow therapy: an in vitro study. BMC Pulmonary Medicine, 2019, 19, 42.	0.8	8
112	Spray Dried Rugose Lipid Particle Platform for Respiratory Drug Delivery. Pharmaceutical Research, 2022, 39, 805-823.	1.7	8
113	Aerodynamic Forces and Moment on a Sphere or Cylinder Attached to a Wall in a Blasius Boundary Layer. Engineering Applications of Computational Fluid Mechanics, 2009, 3, 289-295.	1.5	7
114	The Aerodynamic Behavior of Fibers in a Linear Shear Flow. Aerosol Science and Technology, 2011, 45, 1260-1271.	1.5	7
115	Using Filters to Estimate Regional Lung Deposition with Dry Powder Inhalers. Pharmaceutical Research, 2021, 38, 1601-1613.	1.7	7
116	Comparison of airway pressures and expired gas washout for nasal high flow versus CPAPÂin child airway replicas. Respiratory Research, 2021, 22, 289.	1.4	7
117	THREE-DIMENSIONAL VISCOUS FLOW THROUGH A ROTATING CHANNEL: A PSEUDOSPECTRAL MATRIX METHOD APPROACH. International Journal for Numerical Methods in Fluids, 1996, 23, 379-396.	0.9	6
118	The Effect of Altitude on Inhaler Performance. Journal of Pharmaceutical Sciences, 2014, 103, 2116-2124.	1.6	6
119	Low re-inhalation of the exhaled flow during normal nasal breathing in a pediatric airway replica. Building and Environment, 2016, 97, 40-47.	3.0	6
120	Scaling an idealized infant nasal airway geometry to mimic inertial filtration of neonatal nasal airways. Journal of Aerosol Science, 2018, 118, 14-21.	1.8	6
121	The influence of flowrate and gas density on positive airway pressure for high flow nasal cannula applied to infant airway replicas. Journal of Biomechanics, 2020, 112, 110022.	0.9	6
122	Onset of Flash Atomization in a Propellant Microjet. Journal of Fluids Engineering, Transactions of the ASME, 2015, 137, .	0.8	5
123	Deposition of Aerosols in the Lungs: Particle Characteristics. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2021, 34, 213-216.	0.7	5
124	Inferring secondary flows from smoke or dye flow visualization: Two case studies. Physics of Fluids A, Fluid Dynamics, 1993, 5, 2689-2701.	1.6	4
125	Dry Powder Inhaler Delivery of Tobramycin in <i>In Vitro</i> Models of Tracheostomized Children. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2017, 30, 64-70.	0.7	4
126	Development of a filter that mimics tracheobronchial deposition of respirable aerosols in humans. Aerosol Science and Technology, 2019, 53, 802-816.	1.5	4

#	Article	IF	CITATIONS
127	Recent In Vitro and In Silico Advances in the Understanding of Intranasal Drug Delivery. Current Pharmaceutical Design, 2021, 27, 1482-1497.	0.9	4
128	Inhaled Nitric Oxide: In Vitro Analysis of Continuous Flow Noninvasive Delivery via Nasal Cannula. Respiratory Care, 2021, 66, 228-239.	0.8	3
129	In Vitro Estimation of Tracheobronchial and Alveolar Doses Using Filters. Frontiers in Drug Delivery, 2022, 2, .	0.4	3
130	An Apparatus to Deliver Mannitol Powder for Bronchial Provocation in Children Under Six Years Old. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2015, 28, 452-461.	0.7	2
131	Theoretical and experimental evaluation of the effects of an argon gas mixture on the pressure drop through adult tracheobronchial airway replicas. Journal of Biomechanics, 2017, 58, 217-221.	0.9	2
132	Generation and characterization of electrostatically charged radiolabelled aerosols for lung scintigraphy. Aerosol Science and Technology, 2021, 55, 640-652.	1.5	2
133	A simple HEPA filtering facepiece. American Journal of Infection Control, 2021, 49, 1206-1209.	1.1	2
134	Nebulizer Technologies. , 2008, , 613-621.		2
135	Use of Airway Replicas in Lung Delivery Applications. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2022, 35, 61-72.	0.7	2
136	At the Frontiers of Understanding: Inhaled Aerosols in Neonates: Commentary on articles by Minocchieri et al. on page 141, and Sood et al. on page 159. Pediatric Research, 2008, 64, 121-122.	1.1	1
137	The midrange wavenumber spectrum of van Gogh's <i>Starry Night</i> does not obey a turbulent inertial range scaling law. Journal of Turbulence, 2020, 21, 34-38.	0.5	1
138	Size-Specific Filtration Performance of N95 Respirators After Decontamination by Moist Heat Incubation. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2022, 35, 41-49.	0.7	1
139	Introduction to the respiratory tract., 2001,, 93-103.		1
140	Recent Advances in Predictive Understanding of Respiratory Tract Deposition. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2008, .	1.2	1
141	In Vitro Evaluation of a Nasal Interface Used to Improve Delivery from a Portable Oxygen Concentrator. Journal of Medical Devices, Transactions of the ASME, 2021, , .	0.4	1
142	Comparisons between inhaled fine particle fractions and lung dose for nebulized aerosols. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 1998, 11 Suppl 1, S65-72.	1.2	1
143	Empirical Deposition Correlations. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2022, 35, 109-120.	0.7	1
144	Particle size changes due to evaporation or condensation., 2001,, 47-91.		0

#	ARTICLE	IF	CITATIONS
145	A twoâ€grid fictitious domain method for direct simulation of flows involving nonâ€interacting particles of a very small size. International Journal for Numerical Methods in Fluids, 2010, 63, 1241-1255.	0.9	0
146	Response to the "Letter to the Editor― Aerosol Science and Technology, 2012, 46, iii-iii.	1.5	0
147	Motion of a single aerosol particle in a fluid. , 2019, , 21-52.		0
148	Particle size changes due to evaporation or condensation., 2019,, 53-101.		0
149	Introduction to the respiratory tract. , 2019, , 103-116.		0
150	Fluid dynamics in the respiratory tract., 2019, , 117-132.		0
151	Particle deposition in the respiratory tract., 2019,, 133-182.		0