
Bryan K Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1486078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3, 4-methylenedioxymethamphetamine. Brain Research, 1992, 581, 237-243.	1.1	342
2	An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sciences, 1988, 43, 913-922.	2.0	331
3	Methamphetamine-induced neurotoxicity: Roles for glutamate and dopamine efflux. Synapse, 1994, 17, 203-209.	0.6	259
4	Amphetamine toxicities. Annals of the New York Academy of Sciences, 2010, 1187, 101-121.	1.8	232
5	Regulation of Extracellular Dopamine by the Norepinephrine Transporter. Journal of Neurochemistry, 1998, 71, 274-280.	2.1	192
6	High-Dose Methamphetamine Acutely Activates the Striatonigral Pathway to Increase Striatal Glutamate and Mediate Long-Term Dopamine Toxicity. Journal of Neuroscience, 2004, 24, 11449-11456.	1.7	177
7	Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sciences, 2014, 97, 37-44.	2.0	167
8	The Role of Oxidative Stress, Metabolic Compromise, and Inflammation in Neuronal Injury Produced by Amphetamine-Related Drugs of Abuse. Journal of NeuroImmune Pharmacology, 2008, 3, 203-217.	2.1	139
9	Amphetamine Neurotoxicity: Cause and Consequence of Oxidative Stress. Critical Reviews in Neurobiology, 2005, 17, 87-118.	3.3	126
10	Ceftriaxone attenuates ethanol drinking and restores extracellular glutamate concentration through normalization of GLT-1 in nucleus accumbens of male alcohol-preferring rats. Neuropharmacology, 2015, 97, 67-74.	2.0	106
11	A neurochemical heterogeneity of the rat striatum as measured by in vivo electrochemistry and microdialysis. Brain Research, 1990, 506, 236-242.	1.1	100
12	Methamphetamine effects on blood-brain barrier structure and function. Frontiers in Neuroscience, 2015, 9, 69.	1.4	97
13	Causes and Consequences of Methamphetamine and MDMA Toxicity. AAPS Journal, 2006, 08, E337.	2.2	94
14	Interactions between methamphetamine and environmental stress: role of oxidative stress, glutamate and mitochondrial dysfunction. Addiction, 2007, 102, 49-60.	1.7	84
15	l-dopa-induced dopamine synthesis and oxidative stress in serotonergic cells. Neuropharmacology, 2013, 67, 243-251.	2.0	78
16	Fluorescein Isothiocyanate (FITC)â€Dextran Extravasation as a Measure of Bloodâ€Brain Barrier Permeability. Current Protocols in Neuroscience, 2017, 79, 9.58.1-9.58.15.	2.6	62
17	Dynamic Changes in Vesicular Glutamate Transporter 1 Function and Expression Related to Methamphetamine-Induced Glutamate Release. Journal of Neuroscience, 2007, 27, 6823-6831.	1.7	61
18	Persistent Neuroinflammatory Effects of Serial Exposure to Stress and Methamphetamine on the Blood-Brain Barrier. Journal of NeuroImmune Pharmacology, 2012, 7, 951-968.	2.1	59

BRYAN K YAMAMOTO

#	Article	IF	CITATIONS
19	Peripheral Ammonia as a Mediator of Methamphetamine Neurotoxicity. Journal of Neuroscience, 2012, 32, 13155-13163.	1.7	55
20	Methamphetamine-induced spectrin proteolysis in the rat striatum. Journal of Neurochemistry, 2006, 96, 1267-1276.	2.1	51
21	Chronic stress enhances methamphetamineâ€induced extracellular glutamate and excitotoxicity in the rat striatum. Synapse, 2008, 62, 325-336.	0.6	46
22	Ammonia Mediates Methamphetamine-Induced Increases in Glutamate and Excitotoxicity. Neuropsychopharmacology, 2014, 39, 1031-1038.	2.8	46
23	MDMA Increases Glutamate Release and Reduces Parvalbumin-Positive GABAergic Cells in the Dorsal Hippocampus of the Rat: Role of Cyclooxygenase. Journal of NeuroImmune Pharmacology, 2013, 8, 58-65.	2.1	44
24	<scp>HIV</scp> and drug abuse mediate astrocyte senescence in a βâ€cateninâ€dependent manner leading to neuronal toxicity. Aging Cell, 2017, 16, 956-965.	3.0	43
25	Long-lasting effects of chronic stress on DOI-induced hyperthermia in male rats. Psychopharmacology, 2003, 169, 169-175.	1.5	38
26	Methamphetamine causes acute hyperthermiaâ€dependent liver damage. Pharmacology Research and Perspectives, 2013, 1, e00008.	1.1	37
27	Chronic l-Dopa Decreases Serotonin Neurons in a Subregion of the Dorsal Raphe Nucleus. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 440-447.	1.3	37
28	Peripheral ammonia and blood brain barrier structure and function after methamphetamine. Neuropharmacology, 2016, 107, 18-26.	2.0	36
29	Chronic-Stress-Induced Behavioral Changes Associated with Subregion-Selective Serotonin Cell Death in the Dorsal Raphe. Journal of Neuroscience, 2017, 37, 6214-6223.	1.7	36
30	Augmentation of methamphetamineâ€induced toxicity in the rat striatum by unpredictable stress: contribution of enhanced hyperthermia. European Journal of Neuroscience, 2007, 26, 739-748.	1.2	35
31	Prenatal methadone exposure disrupts behavioral development and alters motor neuron intrinsic properties and local circuitry. ELife, 2021, 10, .	2.8	32
32	A rapid and simple HPLC microassay for biogenic amines in discrete brain regions. Pharmacology Biochemistry and Behavior, 1988, 30, 795-799.	1.3	19
33	Chronic Stress Enhances the Corticosterone Response and Neurotoxicity to +3,4-Methylenedioxymethamphetamine (MDMA): The Role of Ambient Temperature. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 180-189.	1.3	19
34	Protracted effects of chronic stress on serotonin-dependent thermoregulation. Stress, 2015, 18, 668-676.	0.8	19
35	Serotonin 2 receptor modulation of hyperthermia, corticosterone, and hippocampal serotonin depletions following serial exposure to chronic stress and methamphetamine. Psychoneuroendocrinology, 2010, 35, 629-633.	1.3	17
36	Methamphetamine-Induced Brain Injury and Alcohol Drinking. Journal of NeuroImmune Pharmacology, 2018, 13, 53-63.	2.1	15

Bryan K Yamamoto

#	Article	IF	CITATIONS
37	Cyclooxygenase activity contributes to the monoaminergic damage caused by serial exposure to stress and methamphetamine. Neuropharmacology, 2013, 72, 96-105.	2.0	14
38	Neurotoxicity to dopamine neurons after the serial exposure to alcohol and methamphetamine: Protection by COX-2 antagonism. Brain, Behavior, and Immunity, 2019, 81, 317-328.	2.0	14
39	Mechanisms Regulating the Association of Protein Phosphatase 1 with Spinophilin and Neurabin. ACS Chemical Neuroscience, 2018, 9, 2701-2712.	1.7	13
40	Serial exposure to ethanol drinking and methamphetamine enhances glutamate excitotoxicity. Journal of Neurochemistry, 2019, 151, 749-763.	2.1	13
41	MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors. European Journal of Pharmacology, 2015, 761, 95-100.	1.7	11
42	3,4â€methylenedioxymethamphetamine increases excitability in the dentate gyrus: role of 5 <scp>HT</scp> 2A receptorâ€induced <scp>PGE</scp> 2 signaling. Journal of Neurochemistry, 2016, 136, 1074-1084.	2.1	11
43	MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate. NeuroToxicology, 2016, 57, 282-290.	1.4	9
44	Evaluation of Microglia/Macrophage Cells from Rat Striatum and Prefrontal Cortex Reveals Differential Expression of Inflammatory-Related mRNA after Methamphetamine. Brain Sciences, 2019, 9, 340.	1.1	9
45	Serotonin transporter regulation by cholesterol-independent lipid signaling. Biochemical Pharmacology, 2021, 183, 114349.	2.0	9
46	Gut and brain profiles that resemble pre-motor and early-stage Parkinson's disease in methamphetamine self-administering rats. Drug and Alcohol Dependence, 2021, 225, 108746.	1.6	7
47	Cerebrovascular Injury After Serial Exposure to Chronic Stress and Abstinence from Methamphetamine Self-Administration. Scientific Reports, 2018, 8, 10558.	1.6	6
48	Roflumilast treatment during forced abstinence reduces relapse to methamphetamine seeking and taking. Addiction Biology, 2022, 27, e13082.	1.4	5
49	Toxic Effects of Methamphetamine on Perivascular Health: Co-morbid Effects of Stress and Alcohol Use Disorders. Current Neuropharmacology, 2021, 19, .	1.4	4
50	Methamphetamine-Induced Oxidation of Proteins and Alterations in Protein Processing. Neuropsychopharmacology, 2012, 37, 298-299.	2.8	2
51	Methamphetamine Neurotoxicity and Neuroinflammatory Processes. , 2014, , 443-462.		2
52	The effects of alcohol drinking on subsequent methamphetamine self-administration and relapse in adolescent female rats. Behavioural Brain Research, 2022, 422, 113771.	1.2	2
53	Alcohol reinstatement after prolonged abstinence from alcohol drinking by female adolescent rats: Roles of cyclooxygenase-2 and the prostaglandin E2 receptor 1. Drug and Alcohol Dependence, 2022, 236, 109491.	1.6	2
54	Inflammatory mechanisms of abused drugs. Advances in Neurotoxicology, 2019, , 133-168.	0.7	1

Bryan K Yamamoto

#	Article	IF	CITATIONS
55	Combined and sequential effects of alcohol and methamphetamine in animal models. Neuroscience and Biobehavioral Reviews, 2021, 131, 248-269.	2.9	1
56	Role of norepinephrine in substance abuse. , 0, , 610-627.		0
57	Regulation of serotonin transport by geranylgeranyl transferase and Ca 2+ /calmodulinâ€dependent protein kinase II. FASEB Journal, 2021, 35, .	0.2	Ο
58	Chronic Intermittent Access to Alcohol Increases Ca v 1.2 in Dopamine Cells of the Substantia Nigra Pars Compacta. FASEB Journal, 2021, 35, .	0.2	0
59	Methamphetamine oxidatively modifies the E3 ligase parkin and attenuates the activity of 26S proteasome in vivo. FASEB Journal, 2010, 24, 759.3.	0.2	Ο
60	Increased plasma ammonia concentration contributes to methamphetamineâ€induced bloodâ€brain barrier damage. FASEB Journal, 2013, 27, 653.2.	0.2	0
61	Inflammation Produced by Alcohol Synergizes with Methamphetamine to Cause Dopaminergic Deficits. FASEB Journal, 2018, 32, 553.4.	0.2	О