Yaofeng Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1485829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Underlying function regulators of anaerobic granular sludge: Starvation and dormancy. Science of the Total Environment, 2022, 807, 151024.	3.9	10
2	Low strength wastewater anammox start-up by stepwise decrement in influent nitrogen: Biofilm formation mechanism and mathematical modelling. Environment International, 2022, 158, 106929.	4.8	32
3	Stratification patterns of anammox granular sludge bed: Linking particle size distribution to microbial activity and community. Environmental Research, 2022, 210, 112763.	3.7	8
4	Nitrogen input promotes denitrifying methanotrophs' abundance and contribution to methane emission reduction in coastal wetland and paddy soil. Environmental Pollution, 2022, 302, 119090.	3.7	20
5	Rapid enrichment of denitrifying methanotrophs in a series hollow-fiber membrane biofilm reactor. Science of the Total Environment, 2022, 834, 155375.	3.9	4
6	Insights into the enhanced effect of Low-Intensity Ultrasound on anammox granular sludge by relieving the embolism. Chemical Engineering Journal, 2022, 446, 137470.	6.6	6
7	The long-term effects of using nitrite and urea on the enrichment of comammox bacteria. Science of the Total Environment, 2021, 755, 142580.	3.9	25
8	The removal of copper and zinc from swine wastewater by anaerobic biological-chemical process: Performance and mechanism. Journal of Hazardous Materials, 2021, 401, 123767.	6.5	31
9	Deciphering correlation between permeability and size of anammox granule: "pores as medium― Water Research, 2021, 191, 116832.	5.3	42
10	A novel SAD process: Match of anammox and denitrification. Water Research, 2021, 193, 116874.	5.3	37
11	Dominance of comammox Nitrospira in soil nitrification. Science of the Total Environment, 2021, 780, 146558.	3.9	59
12	Microbial interaction promotes desulfurization efficiency under high pH condition. Environmental Research, 2021, 200, 111423.	3.7	15
13	Resistance genes and extracellular proteins relieve antibiotic stress on the anammox process. Water Research, 2021, 202, 117453.	5.3	56
14	Potential of anammox process towards high-efficient nitrogen removal in wastewater treatment: Theoretical analysis and practical case with a SBR. Chemosphere, 2021, 281, 130729.	4.2	8
15	Dimension effect of anammox granule: Potential vs performance. Science of the Total Environment, 2021, 795, 148681.	3.9	20
16	Controlling filamentous sludge bulking by regulating oxygen supply in the start of BISURE system. Chemical Engineering Journal, 2021, 424, 130487.	6.6	3
17	Effect of temperature decrease on anammox granular sludge: Shock and adaptation. Science of the Total Environment, 2021, 798, 149242.	3.9	12
18	Performance of DOuble Circulation Anaerobic Sludge bed reactor: Biomass self-balance. Bioresource Technology, 2021, 320, 124407.	4.8	8

#	Article	IF	CITATIONS
19	The effect of hydraulic retention time on ammonia and nitrate bio-removal over nitrite process. Environmental Technology (United Kingdom), 2020, 41, 1275-1283.	1.2	7
20	Metagenomics reveals microbial community differences lead to differential nitrate production in anammox reactors with differing nitrogen loading rates. Water Research, 2020, 169, 115279.	5.3	62
21	Response of FANIR system to starvation stress: "Dormancy― Water Research, 2020, 171, 115380.	5.3	21
22	Deciphering correlation between chromaticity and activity of anammox sludge. Water Research, 2020, 185, 116184.	5.3	52
23	An efficient way to achieve stable and high-rate ferrous ion-dependent nitrate removal (FeNiR): Batch sludge replacement. Science of the Total Environment, 2020, 738, 139396.	3.9	11
24	Surface ammonium loading rate shifts ammonia-oxidizing communities in surface water-fed rapid sand filters. FEMS Microbiology Ecology, 2020, 96, .	1.3	15
25	Iron as electron donor for denitrification: The efficiency, toxicity and mechanism. Ecotoxicology and Environmental Safety, 2020, 194, 110343.	2.9	47
26	Mechanisms of sulfur selection and sulfur secretion in a biological sulfide removal (BISURE) system. Environment International, 2020, 137, 105549.	4.8	32
27	Temporal discrepancy of airborne total bacteria and pathogenic bacteria between day and night. Environmental Research, 2020, 186, 109540.	3.7	22
28	Surface convexity of anammox granular sludge: Digital characterization, state indication and formation mechanism. Environment International, 2019, 131, 105017.	4.8	24
29	Performance and working mechanism of a novel anaerobic self-flotation reactor for treating wastewater with high suspended solids. Environmental Science and Pollution Research, 2019, 26, 26193-26202.	2.7	7
30	Microbial community evolution and fate of antibiotic resistance genes in anammox process under oxytetracycline and sulfamethoxazole stresses. Bioresource Technology, 2019, 293, 122096.	4.8	61
31	Enhanced anaerobic treatment of swine wastewater with exogenous granular sludge: Performance and mechanism. Science of the Total Environment, 2019, 697, 134180.	3.9	23
32	Deactivation mechanism of calcified anaerobic granule: Space occupation and pore blockage. Water Research, 2019, 166, 115062.	5.3	43
33	A holistic analysis of ANAMMOX process in response to salinity: From adaptation to collapse. Separation and Purification Technology, 2019, 215, 342-350.	3.9	78
34	The distribution variance of airborne microorganisms in urban and rural environments. Environmental Pollution, 2019, 247, 898-906.	3.7	64
35	Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Applied and Environmental Microbiology, 2019, 85, .	1.4	7
36	A secret of high-rate mass transfer in anammox granular sludge: "Lung-like breathing― Water Research, 2019, 154, 189-198.	5.3	43

#	Article	IF	CITATIONS
37	A challenge in anaerobic digestion of swine wastewater: recalcitrance and enhanced-degradation of dietary fibres. Biodegradation, 2019, 30, 389-400.	1.5	3
38	Achieving high nitrogen removal efficiency by optimizing nitrite-dependent anaerobic methane oxidation process with growth factors. Water Research, 2019, 161, 35-42.	5.3	29
39	Ecological Success of the Nitrosopumilus and Nitrosospira Clusters in the Intertidal Zone. Microbial Ecology, 2019, 78, 555-564.	1.4	16
40	The anammox process at typical feast-famine states: Reactor performance, sludge activity and microbial community. Chemical Engineering Journal, 2019, 370, 110-119.	6.6	53
41	Sources of anammox granular sludge and their sustainability in treating low-strength wastewater. Chemosphere, 2019, 226, 229-237.	4.2	8
42	Texture of anammox sludge bed: Composition feature, visual characterization and formation mechanism. Water Research, 2019, 154, 180-188.	5.3	38
43	Characteristics of Microbial Communities and Their Correlation With Environmental Substrates and Sediment Type in the Gas-Bearing Formation of Hangzhou Bay, China. Frontiers in Microbiology, 2019, 10, 2421.	1.5	3
44	Denitrifying Anaerobic Methane Oxidation: A Previously Overlooked Methane Sink in Intertidal Zone. Environmental Science & Technology, 2019, 53, 203-212.	4.6	88
45	Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers. Environmental Pollution, 2019, 244, 228-237.	3.7	53
46	Oxidation of organic electron donor by denitratation: Performance, pathway and key microorganism. Chemical Engineering Journal, 2018, 343, 554-560.	6.6	36
47	Effect of inocula on performance of bio-cathode denitrification and its microbial mechanism. Chemical Engineering Journal, 2018, 343, 399-407.	6.6	54
48	Characterization of oligotrophic AnAOB culture: morphological, physiological, and ecological features. Applied Microbiology and Biotechnology, 2018, 102, 995-1003.	1.7	22
49	Chemolithotrophic denitrification by nitrate-dependent anaerobic iron oxidizing (NAIO) process: Insights into the evaluation of seeding sludge. Chemical Engineering Journal, 2018, 345, 345-352.	6.6	32
50	Deep purification of low-strength ammonium-containing wastewater with ANRE process. Biochemical Engineering Journal, 2018, 129, 57-63.	1.8	5
51	A novel Fe(II)-Ca synergistic phosphorus removal process: process optimization and phosphorus recovery. Environmental Science and Pollution Research, 2018, 25, 1543-1550.	2.7	7
52	Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environmental Pollution, 2018, 233, 483-493.	3.7	164
53	Color characterization of anammox granular sludge: Chromogenic substance, microbial succession and state indication. Science of the Total Environment, 2018, 642, 1320-1327.	3.9	82
54	Salinity-Aided Selection of Progressive Onset Denitrifiers as a Means of Providing Nitrite for Anammox. Environmental Science & Technology, 2018, 52, 10665-10672.	4.6	64

#	Article	IF	CITATIONS
55	Source analysis of organic matter in swine wastewater after anaerobic digestion with EEM-PARAFAC. Environmental Science and Pollution Research, 2017, 24, 6770-6778.	2.7	45
56	Nitrate effects on chromate reduction in a methane-based biofilm. Water Research, 2017, 115, 130-137.	5.3	69
57	Heterotrophic Ammonia and Nitrate Bio-removal Over Nitrite (Hanbon): Performance and microflora. Chemosphere, 2017, 182, 532-538.	4.2	30
58	Predicting settling performance of ANAMMOX granular sludge based on fractal dimensions. Water Research, 2017, 120, 222-228.	5.3	27
59	Chemoautotrophic denitrification based on ferrous iron oxidation: Reactor performance and sludge characteristics. Chemical Engineering Journal, 2017, 313, 693-701.	6.6	70
60	Spatial and temporal distribution of nitrite-dependent anaerobic methane-oxidizing bacteria in an intertidal zone of the East China Sea. Applied Microbiology and Biotechnology, 2017, 101, 8007-8014.	1.7	28
61	Impacts of electron donor and acceptor on the performance of electrotrophic denitrification. Environmental Science and Pollution Research, 2017, 24, 19693-19702.	2.7	10
62	Elemental sulfur recovery of biological sulfide removal process from wastewater: A review. Critical Reviews in Environmental Science and Technology, 2017, 47, 2079-2099.	6.6	57
63	Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments. Applied Microbiology and Biotechnology, 2016, 100, 7171-7180.	1.7	58
64	Bioreduction of Chromate in a Methane-Based Membrane Biofilm Reactor. Environmental Science & Technology, 2016, 50, 5832-5839.	4.6	120
65	Enhanced short-cut nitrification in an airlift reactor by CaCO3 attachment on biomass under high bicarbonate condition. Biodegradation, 2016, 27, 131-144.	1.5	9
66	Robustness of ANAMMOX granule sludge bed reactor: Effect and mechanism of organic matter interference. Ecological Engineering, 2016, 91, 131-138.	1.6	26
67	Enrichment and characterization of acid-tolerant nitrifying sludge. Journal of Environmental Management, 2016, 184, 196-203.	3.8	4
68	Enrichment of denitratating bacteria from a methylotrophic denitrifying culture. Applied Microbiology and Biotechnology, 2016, 100, 10203-10213.	1.7	49
69	Selenate and Nitrate Bioreductions Using Methane as the Electron Donor in a Membrane Biofilm Reactor. Environmental Science & Technology, 2016, 50, 10179-10186.	4.6	119
70	Hydrophilicity/hydrophobicity of anaerobic granular sludge surface and their causes: An in situ research. Bioresource Technology, 2016, 220, 117-123.	4.8	45
71	Improved PCR primers to amplify 16S rRNA genes from NC10 bacteria. Applied Microbiology and Biotechnology, 2016, 100, 5099-5108.	1.7	32
72	Physicochemical characteristics and microbial community of cultivated sludge for nitrate-dependent anaerobic ferrous-oxidizing (NAFO) process. Separation and Purification Technology, 2016, 169, 296-303.	3.9	17

#	Article	IF	CITATIONS
73	A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Scientific Reports, 2016, 6, 32241.	1.6	74
74	Effects of inorganic salts on denitrifying granular sludge: The acute toxicity and working mechanisms. Bioresource Technology, 2016, 204, 65-70.	4.8	46
75	Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. Water Science and Technology, 2016, 73, 947-954.	1.2	19
76	A start-up strategy for high-rate partial nitritation based on DO-HRT control. Process Biochemistry, 2016, 51, 95-104.	1.8	16
77	Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system: Performance, microflora and enzymatic activities. Water Research, 2016, 88, 758-765.	5.3	91
78	Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria. Applied and Environmental Microbiology, 2015, 81, 5538-5545.	1.4	71
79	pH levels drive bacterial community structure in sediments of the Qiantang River as determined by 454 pyrosequencing. Frontiers in Microbiology, 2015, 6, 285.	1.5	101
80	Performance stability of a lab-scale internal-loop airlift bio-particle reactor under substrate concentration shocks for simultaneous partial nitrification and anaerobic ammonia oxidation. Separation and Purification Technology, 2015, 141, 322-330.	3.9	9
81	Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: A novel prospective technology for autotrophic denitrification. Bioresource Technology, 2015, 179, 543-548.	4.8	83
82	Phosphorus removal using ferric–calcium complex as precipitant: Parameters optimization and phosphorus-recycling potential. Chemical Engineering Journal, 2015, 268, 230-235.	6.6	32
83	Prediction and quantifying parameter importance in simultaneous anaerobic sulfide and nitrate removal process using artificial neural network. Environmental Science and Pollution Research, 2015, 22, 8272-8279.	2.7	12
84	Effects of operation mode on self-alkalization of high-load denitrifying reactor. Bioresource Technology, 2015, 187, 282-287.	4.8	5
85	Acute toxicity assessment of ANAMMOX substrates and antibiotics by luminescent bacteria test. Chemosphere, 2015, 140, 174-183.	4.2	56
86	Effect of organic toxicants on the activity of denitrifying granular sludge. Environmental Technology (United Kingdom), 2015, 36, 699-705.	1.2	8
87	Improvement of the trace metal composition of medium for nitrite-dependent anaerobic methane oxidation bacteria: Iron (II) and copper (II) make a difference. Water Research, 2015, 85, 235-243.	5.3	54
88	Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria. Applied Microbiology and Biotechnology, 2015, 99, 8587-8596.	1.7	42
89	Nitrogen removal from wastewater by anaerobic methane-driven denitrification in a lab-scale reactor: heterotrophic denitrifiers associated with denitrifying methanotrophs. Applied Microbiology and Biotechnology, 2015, 99, 10853-10860.	1.7	31
90	Bioaugmentation of nitrate-dependent anaerobic ferrous oxidation by heterotrophic denitrifying sludge addition: A promising way for promotion of chemoautotrophic denitrification. Bioresource Technology, 2015, 197, 410-415.	4.8	38

#	Article	IF	CITATIONS
91	Oxygen Transfer Characteristics in a Pilot-Scale Airlift Internal-Loop Bioreactor for Simultaneous Partial Nitrification and Anaerobic Ammonia Oxidation. Environmental Engineering Science, 2014, 31, 453-460.	0.8	5
92	Characteristics of self-alkalization in high-rate denitrifying automatic circulation (DAC) reactor fed with methanol and sodium acetate. Bioresource Technology, 2014, 154, 44-50.	4.8	57
93	Floatation of granular sludge and its mechanism: A key approach for high-rate denitrifying reactor. Bioresource Technology, 2014, 152, 414-419.	4.8	26
94	Microbial consortium and its spatial distribution in a compartmentalized anaerobic reactor. Applied Microbiology and Biotechnology, 2014, 98, 1357-1366.	1.7	13
95	Partitionable-space enhanced coagulation (PEC) reactor and its working mechanism: A new prospective chemical technology for phosphorus pollution control. Water Research, 2014, 49, 426-433.	5.3	20
96	Enhanced nitrogen removal from ammonium-rich wastewater containing high organic contents by coupling with novel high-rate ANAMMOX granules addition. Chemical Engineering Journal, 2014, 240, 454-461.	6.6	44
97	Effect of particle size on the performance of autotrophic nitrogen removal in the granular sludge bed reactor and microbiological mechanisms. Bioresource Technology, 2014, 157, 240-246.	4.8	47
98	Evidence for the Cooccurrence of Nitrite-Dependent Anaerobic Ammonium and Methane Oxidation Processes in a Flooded Paddy Field. Applied and Environmental Microbiology, 2014, 80, 7611-7619.	1.4	108
99	Effect of electrode types on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. Separation and Purification Technology, 2014, 134, 20-25.	3.9	14
100	Anaerobic ferrous oxidation by heterotrophic denitrifying enriched culture. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 803-809.	1.4	42
101	Effect of operating modes on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 795-802.	1.4	21
102	Substrates and pathway of electricity generation in a nitrification-based microbial fuel cell. Bioresource Technology, 2014, 161, 208-214.	4.8	32
103	Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration. Applied Microbiology and Biotechnology, 2014, 98, 7983-7991.	1.7	69
104	The effect of substrate concentration fluctuation on the performance of high-rate denitrifying reactor. Bioresource Technology, 2014, 167, 53-60.	4.8	8
105	Thermodynamic and kinetic investigation of anaerobic bioprocesses on ANAMMOX under high organic conditions. Chemical Engineering Journal, 2013, 230, 149-157.	6.6	64
106	Ecological characteristics of anaerobic ammonia oxidizing bacteria. Applied Microbiology and Biotechnology, 2013, 97, 1841-1849.	1.7	49
107	Physical characteristics and formation mechanism of denitrifying granular sludge in high-load reactor. Bioresource Technology, 2013, 142, 683-687.	4.8	46
108	Simultaneous anaerobic sulfide and nitrate removal coupled with electricity generation in Microbial Fuel Cell. Bioresource Technology, 2013, 129, 224-228.	4.8	37

#	Article	IF	CITATIONS
109	Modelling a nitrite-dependent anaerobic methane oxidation process: Parameters identification and model evaluation. Bioresource Technology, 2013, 147, 315-320.	4.8	85
110	The morphological and settling properties of ANAMMOX granular sludge in high-rate reactors. Bioresource Technology, 2013, 143, 592-597.	4.8	52
111	Growth and metabolism characteristics of anaerobic ammonium-oxidizing bacteria aggregates. Applied Microbiology and Biotechnology, 2013, 97, 5575-5583.	1.7	63
112	Characterization and quantification of anammox start-up in UASB reactors seeded with conventional activated sludge. International Biodeterioration and Biodegradation, 2013, 82, 141-148.	1.9	74
113	The Increasing Interest of ANAMMOX Research in China: Bacteria, Process Development, and Application. BioMed Research International, 2013, 2013, 1-21.	0.9	70
114	Start-Up Characteristics of a Granule-Based Anammox UASB Reactor Seeded with Anaerobic Granular Sludge. BioMed Research International, 2013, 2013, 1-9.	0.9	25
115	The Effects of Operational Conditions on the Respiration Rate of Tubificidae. PLoS ONE, 2013, 8, e81219.	1.1	5
116	The inhibition of the Anammox process: A review. Chemical Engineering Journal, 2012, 197, 67-79.	6.6	692
117	The structure, density and settlability of anammox granular sludge in high-rate reactors. Bioresource Technology, 2012, 123, 312-317.	4.8	136
118	Performance of autotrophic nitrogen removal in the granular sludge bed reactor. Bioresource Technology, 2012, 123, 78-85.	4.8	55
119	Dispersal and control of anammox granular sludge at high substrate concentrations. Biotechnology and Bioprocess Engineering, 2012, 17, 1093-1102.	1.4	14
120	Dynamic behavior and concentration distribution of granular sludge in a super-high-rate spiral anaerobic bioreactor. Bioresource Technology, 2012, 111, 134-140.	4.8	16
121	Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Research, 2011, 45, 135-144.	5.3	505
122	Performance of ANAMMOX-EGSB reactor. Desalination, 2011, 278, 281-287.	4.0	30
123	Characteristics of nitrogenous substrate conversion by anammox enrichment. Bioresource Technology, 2011, 102, 536-542.	4.8	23
124	Kinetic characteristics and microbial community of Anammox-EGSB reactor. Journal of Hazardous Materials, 2011, 190, 28-35.	6.5	81
125	REMOVED: Performance of ANAMMOX-EGSB reactor. Chemical Engineering Journal, 2010, , .	6.6	0
126	Bed expansion behavior and sensitivity analysis for super-high-rate anaerobic bioreactor. Journal of Zhejiang University: Science B, 2010, 11, 79-86.	1.3	11

#	Article	IF	CITATIONS
127	Isolation and identification of bacteria responsible for simultaneous anaerobic ammonium and sulfate removal. Science China Chemistry, 2010, 53, 645-650.	4.2	50
128	Effect of substrate concentration on stability of anammox biofilm reactors. Central South University, 2010, 17, 79-84.	0.5	38
129	Influence of transient pH and substrate shocks on simultaneous anaerobic sulfide and nitrate removal. Journal of Hazardous Materials, 2010, 174, 162-166.	6.5	18
130	Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels. Journal of Hazardous Materials, 2010, 181, 19-26.	6.5	84
131	Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor. Bioresource Technology, 2010, 101, 1762-1768.	4.8	159
132	Promoting sludge quantity and activity results in high loading rates in Anammox UBF. Bioresource Technology, 2010, 101, 2700-2705.	4.8	60
133	Enrichment of high activity nitrifers to enhance partial nitrification process. Bioresource Technology, 2010, 101, 7293-7298.	4.8	35
134	Enrichment features of anammox consortia from methanogenic granules loaded with high organic and methanol contents. Chemosphere, 2010, 79, 613-619.	4.2	76
135	Microbial and Physicochemical Characteristics of Compact Anaerobic Ammonium-Oxidizing Granules in an Upflow Anaerobic Sludge Blanket Reactor. Applied and Environmental Microbiology, 2010, 76, 2652-2656.	1.4	131
136	Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1093-1100.	1.4	166
137	Performance of sulfate-dependent anaerobic ammonium oxidation. Science in China Series B: Chemistry, 2009, 52, 86-92.	0.8	55
138	Isolation of Ochrobactrum sp.QZ2 from sulfide and nitrite treatment system. Journal of Hazardous Materials, 2009, 165, 558-565.	6.5	36
139	Performance of a nitrifying airlift reactor using granular sludge. Separation and Purification Technology, 2008, 63, 670-675.	3.9	46
140	Quantitative comparison of stability of ANAMMOX process in different reactor configurations. Bioresource Technology, 2008, 99, 1603-1609.	4.8	45
141	Effect of sulfide to nitrate ratios on the simultaneous anaerobic sulfide and nitrate removal. Bioresource Technology, 2008, 99, 5520-5527.	4.8	66
142	Performance comparison of two anammox reactors: SBR and UBF. Chemical Engineering Journal, 2008, 138, 224-230.	6.6	83
143	Effect of pH on anoxic sulfide oxidizing reactor performance. Bioresource Technology, 2008, 99, 3291-3296.	4.8	35
144	Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters. Journal of Zhejiang University: Science B, 2008, 9, 416-426.	1.3	63

#	Article	IF	CITATIONS
145	Activated sludge-mediated biodegradation of dimethyl phthalate under fermentative conditions. Journal of Environmental Sciences, 2008, 20, 922-926.	3.2	13
146	Comparison of anoxic sulfide biooxidation using nitrate/nitrite as electron acceptor. Environmental Progress, 2007, 26, 169-177.	0.8	21
147	Isolation and physiology of a dimethyl phthalate degrading bacterial strain YZ2. Environmental Progress, 2007, 26, 384-390.	0.8	6
148	Sources of sulfide in waste streams and current biotechnologies for its removal. Journal of Zhejiang University: Science A, 2007, 8, 1126-1140.	1.3	50
149	Effects of loading rate and hydraulic residence time on anoxic sulfide biooxidation. Journal of Zhejiang University: Science A, 2007, 8, 1149-1156.	1.3	10
150	Isolation and characteristics of Arthrobacter sp. strain CW-1 for biodegradation of PAEs. Journal of Zhejiang University: Science A, 2007, 8, 1469-1474.	1.3	7
151	Synthesis and magnetic properties of novel complexes of poly(N-2-thiazolylmethacrylamide) with Nd(III), Pr(III), and Sm(III). Journal of Applied Polymer Science, 2006, 100, 1289-1293.	1.3	4
152	Synthesis and magnetic properties of novel poly(N-2-thiazolyl(meth)acrylamide)-Fe(II) complexes. Journal of Applied Polymer Science, 2005, 98, 83-87.	1.3	7
153	Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge. Journal of Environmental Sciences, 2004, 16, 13-6.	3.2	13
154	Performance of Anammox granular sludge bed reactor started up with nitrifying granular sludge. Journal of Environmental Sciences, 2004, 16, 339-42.	3.2	5
155	Start-up strategies of UASB reactor for treatment of pharmaceutical wastewater. Journal of Environmental Sciences, 2002, 14, 250-4.	3.2	1
156	Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations. Water Research, 1997, 31, 1955-1962.	5.3	456
157	Kinetic characteristics of biological simultaneous anaerobic sulfide and nitrite removal. Desalination and Water Treatment, 0, , 1-8.	1.0	2