Cole R Hexel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1485815/publications.pdf

Version: 2024-02-01

32 1,735 11 31 g-index

39 39 39 4079

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Direct isotopic analysis of solid uranium particulates on cotton swipes by microextraction-ICP-MS. Analytica Chimica Acta, 2022, 1209, 339836.	2.6	10
2	Determination of phosphorus and sulfur in uranium ore concentrates by triple quadrupole inductively coupled plasma mass spectrometry. Talanta, 2021, 221, 121573.	2.9	13
3	A new highly enriched 233U reference material for improved simultaneous determination of uranium amount and isotope amount ratios in trace level samples. Talanta, 2021, 221, 121638.	2.9	6
4	Trace Elemental Analysis of Bulk Thorium Using an Automated Separation–Inductively Coupled Plasma Optical Emission Spectroscopy Methodology. Applied Spectroscopy, 2021, 75, 556-564.	1.2	2
5	Direct analysis of cotton swipes for plutonium isotope determination by microextraction-ICP-MS. Journal of Analytical Atomic Spectrometry, 2021, 36, 2202-2209.	1.6	9
6	Exploring the use of thorium isotope compositions and concentrations as nuclear forensic signatures for uranium ore concentrates. Journal of Radioanalytical and Nuclear Chemistry, 2021, 327, 877-889.	0.7	5
7	An approach to separating Pu, U, and Ti from high-purity graphite for isotopic analysis by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2021, 36, 1150-1158.	1.6	3
8	Rapid and automated separation of uranium ore concentrates for trace element analysis by inductively coupled plasma – optical emission spectroscopy/triple quadrupole mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 179, 106097.	1.5	16
9	Direct Uranium Isotopic Analysis of Swipe Surfaces by Microextraction-ICP-MS. Analytical Chemistry, 2021, 93, 11133-11139.	3.2	9
10	Insights into secondary ion formation during dynamic SIMS analysis: Evidence from sputtering of laboratory synthesized uranium compounds with a high-energy Oâ^' primary beam on a NanoSIMS 50L. Nuclear Instruments & Methods in Physics Research B, 2021, 502, 164-175.	0.6	1
11	Reproducible automated renewable column generation. Separation Science and Technology, 2020, 55, 860-866.	1.3	1
12	Exploration of ICP platforms for measuring elemental impurities in uranium ore concentrates. International Journal of Mass Spectrometry, 2020, 455, 116378.	0.7	6
13	A preliminary investigation into the use of molecular oxide and hydride secondary ion relationships for improvement of the 236U/238U determination on a NanoSIMS 50L. Scientific Reports, 2020, 10, 12285.	1.6	4
14	Inline gamma-spectrometry of fission product elements after rapid high-pressure ion chromatographic separation. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 759-771.	0.7	2
15	Determining P, S, Br, and I content in uranium by triple quadrupole inductively coupled plasma mass spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 395-402.	0.7	11
16	Rare Earth Element Determination in Uranium Ore Concentrates Using Online and Offline Chromatography Coupled to ICP-MS. Minerals (Basel, Switzerland), 2020, 10, 55.	0.8	21
17	A NanoSIMS 50 L Investigation into Improving the Precision and Accuracy of the 235U/238U Ratio Determination by Using the Molecular 235U16O and 238U16O Secondary Ions. Minerals (Basel,) Tj ETQq1 1 0.7	78 43.1 84 rg	BT†Overlock 1
18	Evaluation and Specifications for In-Line Uranium Separations Using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) Detection for Trace Elemental Analysis. Applied Spectroscopy, 2019, 73, 927-935.	1.2	11

#	Article	IF	CITATIONS
19	Optimization of uranium and plutonium separations using TEVA and UTEVA cartridges for MC-ICP-MS analysis of environmental swipe samples. Talanta, 2019, 198, 257-262.	2.9	29
20	Development of a fast and efficient analytical technique for the isotopic analysis of fission and actinide elements in environmental matrices. Journal of Chromatography A, 2019, 1587, 155-165.	1.8	19
21	Trace impurity analysis in uranium oxide via hybrid quantification techniques—gravimetric standard addition and isotope dilution mass spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 685-694.	0.7	11
22	A reference material for evaluation of 137Cs radiochronometric measurements. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 195-208.	0.7	3
23	Automated Separation of Uranium and Plutonium from Environmental Swipe Samples for Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2018, 90, 9441-9448.	3.2	29
24	Mineral–Water Interface Structure of Xenotime (YPO4) {100}. Journal of Physical Chemistry C, 2018, 122, 20232-20243.	1.5	10
25	Qualification and initial characterization of a high-purity 233U spike for use in uranium analyses. International Journal of Mass Spectrometry, 2015, 389, 47-53.	0.7	9
26	Non-volatile organic analysis of uranium ore concentrates. Journal of Radioanalytical and Nuclear Chemistry, 2013, 296, 817-821.	0.7	10
27	Characterization of Uranium Uptake Kinetics from Seawater in Batch and Flow-Through Experiments. Industrial & Engineering Chemistry Research, 2013, 52, 9433-9440.	1.8	72
28	Input, composition, and potential impact of terrigenous material from free-drifting icebergs in the Weddell Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 1376-1383.	0.6	67
29	234Th-Based Carbon Export around Free-Drifting Icebergs in the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 1384-1391.	0.6	15
30	Free-drifting icebergs as sources of iron to the Weddell Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 1392-1406.	0.6	87
31	Cellular Uptake and Cytotoxicity of Gold Nanorods: Molecular Origin of Cytotoxicity and Surface Effects. Small, 2009, 5, 701-708.	5.2	927
32	Transfer of gold nanoparticles from the water column to the estuarine food web. Nature Nanotechnology, 2009, 4, 441-444.	15.6	307