Florian M W Grundler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1485731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new endophytic fungus CJAN1179 isolated from the Cholistan desert promotes lateral root growth in Arabidopsis and produces IAA through tryptophan-dependent pathway. Archives of Microbiology, 2022, 204, 181.	2.2	4
2	Glutathione contributes to plant defence against parasitic cyst nematodes. Molecular Plant Pathology, 2022, 23, 1048-1059.	4.2	8
3	Mode of action of fluopyram in plant-parasitic nematodes. Scientific Reports, 2022, 12, .	3.3	17
4	Heterologous Production of β-Caryophyllene and Evaluation of Its Activity against Plant Pathogenic Fungi. Microorganisms, 2021, 9, 168.	3.6	15
5	Sublethal fluazaindolizine doses inhibit development of the cyst nematode <scp><i>Heterodera schachtii</i></scp> during sedentary parasitism. Pest Management Science, 2021, 77, 3571-3580.	3.4	7
6	Transcriptomic Analysis of Resistant and Susceptible Responses in a New Model Root-Knot Nematode Infection System Using Solanum torvum and Meloidogyne arenaria. Frontiers in Plant Science, 2021, 12, 680151.	3.6	16
7	Plant parasitic cyst nematodes redirect host indole metabolism via NADPH oxidaseâ€mediated ROS to promote infection. New Phytologist, 2021, 232, 318-331.	7.3	9
8	Bacillus firmus I-1582 promotes plant growth and impairs infection and development of the cyst nematode Heterodera schachtii over two generations. Scientific Reports, 2021, 11, 14114.	3.3	11
9	Heterodera schachtii glutathione peroxidase (HsGPx) is a parasitism protein. Journal of Plant Diseases and Protection, 2020, 127, 111-118.	2.9	2
10	The effector GpRbpâ€1 of <i>Globodera pallida</i> targets a nuclear HECT E3 ubiquitin ligase to modulate gene expression in the host. Molecular Plant Pathology, 2020, 21, 66-82.	4.2	13
11	Inhibition of acetyl-CoA carboxylase by spirotetramat causes growth arrest and lipid depletion in nematodes. Scientific Reports, 2020, 10, 12710.	3.3	12
12	Novel Prodiginine Derivatives Demonstrate Bioactivities on Plants, Nematodes, and Fungi. Frontiers in Plant Science, 2020, 11, 579807.	3.6	22
13	The Plant Sesquiterpene Nootkatone Efficiently Reduces Heterodera schachtii Parasitism by Activating Plant Defense. International Journal of Molecular Sciences, 2020, 21, 9627.	4.1	11
14	Signatures of adaptation to a monocot host in the plantâ€parasitic cyst nematode Heterodera sacchari. Plant Journal, 2020, 103, 1263-1274.	5.7	9
15	Transcriptome and Parasitome Analysis of Beet Cyst Nematode Heterodera schachtii. Scientific Reports, 2020, 10, 3315.	3.3	7
16	Dissecting the Genetic Complexity of Fusarium Crown Rot Resistance in Wheat. Scientific Reports, 2020, 10, 3200.	3.3	15
17	Host factors influence the sex of nematodes parasitizing roots of <scp><i>Arabidopsis thaliana</i></scp> . Plant, Cell and Environment, 2020, 43, 1160-1174.	5.7	17
18	Engineered Rhodobacter capsulatus as a Phototrophic Platform Organism for the Synthesis of Plant Sesquiterpenoids. Frontiers in Microbiology, 2019, 10, 1998.	3.5	31

#	Article	IF	CITATIONS
19	Root endodermal barrier system contributes to defence against plantâ€parasitic cyst and rootâ€knot nematodes. Plant Journal, 2019, 100, 221-236.	5.7	69
20	Singleâ€cell damage elicits regional, nematodeâ€restricting ethylene responses in roots. EMBO Journal, 2019, 38, .	7.8	79
21	Beta-Cryptoxanthin Inhibits Lipopolysaccharide-Induced Osteoclast Differentiation and Bone Resorption via the Suppression of Inhibitor of NF-κB Kinase Activity. Nutrients, 2019, 11, 368.	4.1	28
22	African Nightshade and African Spinach Decrease Root-Knot Nematode and Potato Cyst Nematode Soil Infestation in Kenya. Plant Disease, 2019, 103, 1621-1630.	1.4	11
23	Reâ€ŧargeting of a plant defense protease by a cyst nematode effector. Plant Journal, 2019, 98, 1000-1014.	5.7	30
24	In vitro life cycle of Heterodera sacchari on Pluronic gel. Nematology, 2019, 21, 573-579.	0.6	2
25	Arabidopsis tonoplast intrinsic protein and vacuolar H+-adenosinetriphosphatase reflect vacuole dynamics during development of syncytia induced by the beet cyst nematode Heterodera schachtii. Protoplasma, 2019, 256, 419-429.	2.1	4
26	Arabidopsis <i>HIPP27</i> is a host susceptibility gene for the beet cyst nematode <i>Heterodera schachtii</i> . Molecular Plant Pathology, 2018, 19, 1917-1928.	4.2	38
27	The Role of MPK6 as Mediator of Ethylene/Jasmonic Acid Signaling in Serendipita indica-Colonized Arabidopsis Roots. Plant Molecular Biology Reporter, 2018, 36, 284-294.	1.8	9
28	Genome-wide association study uncovers a novel QTL allele of AtS40-3 that affects the sex ratio of cyst nematodes in Arabidopsis. Journal of Experimental Botany, 2018, 69, 1805-1814.	4.8	11
29	Parasitic nematodes manipulate plant development to establish feeding sites. Current Opinion in Microbiology, 2018, 46, 102-108.	5.1	83
30	Effects of exogenous amino acid applications on the plant-parasitic nematode Heterodera schachtii. Nematology, 2018, 20, 713-727.	0.6	5
31	Amino acid permease 6 modulates host response to cyst nematodes in wheat and Arabidopsis. Nematology, 2018, 20, 737-750.	0.6	7
32	Low Molecular-Weight Curdlan, (1→3)-β-Glucan Suppresses TLR2-Induced RANKL-Dependent Bone Resorption. Biological and Pharmaceutical Bulletin, 2018, 41, 1282-1285.	1.4	13
33	Effects of Polymethoxyflavonoids on Bone Loss Induced by Estrogen Deficiency and by LPS-Dependent Inflammation in Mice. Pharmaceuticals, 2018, 11, 7.	3.8	14
34	Identification of Two <i>Meloidogyne hapla</i> Genes and an Investigation of Their Roles in the Plant-Nematode Interaction. Molecular Plant-Microbe Interactions, 2017, 30, 101-112.	2.6	32
35	Analyzing Cytokinin Responses During Plant-Nematode Interactions. Methods in Molecular Biology, 2017, 1569, 151-158.	0.9	0
36	Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microbial Biotechnology, 2017, 10, 175-188.	4.2	85

3

#	Article	IF	CITATIONS
37	Identification and characterization of a putative protein disulfide isomerase (HsPDI) as an alleged effector of Heterodera schachtii. Scientific Reports, 2017, 7, 13536.	3.3	27
38	Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and rootâ€knot nematodes. Plant Journal, 2017, 92, 211-228.	5.7	42
39	Heterodera schachtii Tyrosinase-like protein - a novel nematode effector modulating plant hormone homeostasis. Scientific Reports, 2017, 7, 6874.	3.3	33
40	Effects of <i>O</i> â€methylated (â^')â€epigallocatechin gallate (<scp>EGCG</scp>) on <scp>LPS</scp> â€induced osteoclastogenesis, bone resorption, and alveolar bone loss in mice. FEBS Open Bio, 2017, 7, 1972-1981.	2.3	19
41	Lutein, a carotenoid, suppresses osteoclastic bone resorption and stimulates bone formation in cultures. Bioscience, Biotechnology and Biochemistry, 2017, 81, 302-306.	1.3	16
42	Lutein Enhances Bone Mass by Stimulating Bone Formation and Suppressing Bone Resorption in Growing Mice. Biological and Pharmaceutical Bulletin, 2017, 40, 716-721.	1.4	14
43	Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes. Journal of Experimental Botany, 2017, 68, 5949-5960.	4.8	56
44	Arabidopsis leucine-rich repeat receptor–like kinase NILR1 is required for induction of innate immunity to parasitic nematodes. PLoS Pathogens, 2017, 13, e1006284.	4.7	135
45	Genome-Wide Association Study in Wheat Identifies Resistance to the Cereal Cyst Nematode <i>Heterodera filipjevi</i> . Phytopathology, 2016, 106, 1128-1138.	2.2	35
46	An improved procedure for isolation of high-quality RNA from nematode-infected Arabidopsis roots through laser capture microdissection. Plant Methods, 2016, 12, 25.	4.3	25
47	Identification and characterisation of resistance to the cereal cyst nematode Heterodera filipjevi in winter wheat. Nematology, 2016, 18, 377-402.	0.6	17
48	Plant basal resistance to nematodes: an update. Journal of Experimental Botany, 2016, 67, 2049-2061.	4.8	137
49	Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycological Progress, 2016, 15, 1.	1.4	43
50	Report on the 43rd Annual Meeting of the DPG-Working Group Nematology. Journal of Plant Diseases and Protection, 2015, 122, 189-193.	2.9	0
51	Arginine metabolism of Arabidopsis thaliana is modulated by Heterodera schachtii infection. Nematology, 2015, 17, 1027-1043.	0.6	5
52	The application of Arabidopsis thaliana in studying tripartite interactions among plants, beneficial fungal endophytes and biotrophic plant-parasitic nematodes. Planta, 2015, 241, 1015-1025.	3.2	28
53	Metabolism in Nematode Feeding Sites. Advances in Botanical Research, 2015, 73, 119-138.	1.1	20
54	Role of stressâ€related hormones in plant defence during early infection of the cyst nematode <i>Heterodera schachtii</i> in Arabidopsis. New Phytologist, 2015, 207, 778-789.	7.3	108

#	Article	IF	CITATIONS
55	A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12669-12674.	7.1	113
56	Activity profiling reveals changes in the diversity and activity of proteins in Arabidopsis roots in response to nematode infection. Plant Physiology and Biochemistry, 2015, 97, 36-43.	5.8	18
57	Epigallocatechin gallate (EGCG) suppresses lipopolysaccharideâ€induced inflammatory bone resorption, and protects against alveolar bone loss in mice. FEBS Open Bio, 2015, 5, 522-527.	2.3	45
58	Parasitic Worms Stimulate Host NADPH Oxidases to Produce Reactive Oxygen Species That Limit Plant Cell Death and Promote Infection. Science Signaling, 2014, 7, ra33.	3.6	125
59	Myoâ€inositol oxygenase is important for the removal of excess myoâ€inositol from syncytia induced by <i><scp>H</scp>eterodera schachtii</i> in <scp>A</scp> rabidopsis roots. New Phytologist, 2014, 201, 476-485.	7.3	46
60	A Distinct Role of Pectate Lyases in the Formation of Feeding Structures Induced by Cyst and Root-Knot Nematodes. Molecular Plant-Microbe Interactions, 2014, 27, 901-912.	2.6	33
61	Piriformospora indica antagonizes cyst nematode infection and development in Arabidopsis roots. Journal of Experimental Botany, 2013, 64, 3763-3774.	4.8	38
62	An Arabidopsis ATPase gene involved in nematodeâ€induced syncytium development and abiotic stress responses. Plant Journal, 2013, 74, 852-866.	5.7	27
63	Next Generation Sequencing Based Transcriptome Analysis of Septic-Injury Responsive Genes in the Beetle Tribolium castaneum. PLoS ONE, 2013, 8, e52004.	2.5	49
64	Cell Wall Ingrowths in Nematode Induced Syncytia Require UGD2 and UGD3. PLoS ONE, 2012, 7, e41515.	2.5	37
65	Water and Nutrient Transport in Nematode Feeding Sites. , 2011, , 423-439.		13
66	Activation of geminivirus Vâ€sense promoters in roots is restricted to nematode feeding sites. Molecular Plant Pathology, 2010, 11, 409-417.	4.2	4
67	Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism. Plant Journal, 2010, 62, 1058-1071.	5.7	152
68	The Role of Callose Deposition Along Plasmodesmata in Nematode Feeding Sites. Molecular Plant-Microbe Interactions, 2010, 23, 549-557.	2.6	52
69	Diversity and activity of sugar transporters in nematode-induced root syncytia. Journal of Experimental Botany, 2009, 60, 3085-3095.	4.8	44
70	The transcriptome of syncytia induced by the cyst nematode <i>Heterodera schachtii</i> in Arabidopsis roots. Plant Journal, 2009, 57, 771-784.	5.7	211
71	The <i>Arabidopsis thaliana</i> Sucrose Transporter Gene <i>AtSUC4</i> is Expressed in <i>Meloidogyne incognita</i> â€induced Root Galls. Journal of Phytopathology, 2009, 157, 256-261.	1.0	14
72	Myoâ€inositol oxygenase genes are involved in the development of syncytia induced by <i>Heterodera schachtii</i> in Arabidopsis roots. New Phytologist, 2009, 184, 457-472.	7.3	51

FLORIAN M W GRUNDLER

#	Article	IF	CITATIONS
73	Arabidopsis endoâ€1,4â€î²â€glucanases are involved in the formation of root syncytia induced by <i>Heterodera schachtii</i> . Plant Journal, 2008, 53, 336-351.	5.7	60
74	PYK10, a βâ€glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between <i>Arabidopsis thaliana</i> and the endophytic fungus <i>Piriformospora indica</i> . Plant Journal, 2008, 54, 428-439.	5.7	127
75	Two tomato α-expansins show distinct spatial and temporal expression patterns during development of nematode-induced syncytia. Physiologia Plantarum, 2008, 132, 370-383.	5.2	30
76	Expansins are among plant cell wall modifying agents specifically expressed during development of nematode-induced syncytia. Plant Signaling and Behavior, 2008, 3, 969-971.	2.4	11
77	Starch Serves as Carbohydrate Storage in Nematode-Induced Syncytia. Plant Physiology, 2008, 146, 228-235.	4.8	44
78	Starch as a sugar reservoir for nematode-induced syncytia. Plant Signaling and Behavior, 2008, 3, 961-962.	2.4	3
79	A Role for AtWRKY23 in Feeding Site Establishment of Plant-Parasitic Nematodes. Plant Physiology, 2008, 148, 358-368.	4.8	145
80	Quantification of tomato expansins in nematode feeding sites of cyst and root-knot nematodes. Journal of Plant Diseases and Protection, 2008, 115, 263-272.	2.9	4
81	How do nematodes get their sweets? Solute supply to sedentary plant-parasitic nematodes. Nematology, 2007, 9, 451-458.	0.6	29
82	Identification of reference genes for qRT-PCR studies of gene expression in giant cells and syncytia induced in Arabidopsis thaliana by Meloidogyne incognita and Heterodera schachtii. Nematology, 2007, 9, 317-323.	0.6	29
83	Sucrose supply to nematode-induced syncytia depends on the apoplasmic and symplasmic pathways. Journal of Experimental Botany, 2007, 58, 1591-1601.	4.8	63
84	Expanding Nematode-Induced Syncytia. Plant Signaling and Behavior, 2006, 1, 223-224.	2.4	6
85	Expansins are involved in the formation of nematode-induced syncytia in roots ofArabidopsis thaliana. Plant Journal, 2006, 48, 98-112.	5.7	132
86	Females andÂmales ofÂroot-parasitic cyst nematodes induce different symplasmic connections between theirÂsyncytial feeding cells andÂtheÂphloem inÂArabidopsisÂthaliana. Plant Physiology and Biochemistry, 2006, 44, 430-433.	5.8	29
87	Identification of a putative cation transporter gene from sugar beet (Beta vulgaris L.) by DDRT-PCR closely linked to the beet cyst nematode resistance gene Hs1pro-1. Plant Science, 2003, 165, 777-784.	3.6	4
88	The Companion Cell-Specific Arabidopsis Disaccharide Carrier AtSUC2 Is Expressed in Nematode-Induced Syncytia. Plant Physiology, 2003, 131, 61-69.	4.8	67
89	Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Science, 2001, 161, 337-346.	3.6	96
90	Imaging arbuscular mycorrhizal structures in living roots of <i>Nicotiana tabacum</i> by light, epifluorescence, and confocal laser scanning microscopy. Canadian Journal of Botany, 2001, 79, 231-237.	1.1	35

FLORIAN M W GRUNDLER

#	Article	IF	CITATIONS
91	Concerted Efforts To Develop Handles For Plant Parasitic Nematode Control. Developments in Plant Genetics and Breeding, 2000, 6, 159-167.	0.6	0
92	Ultrastructure and anatomy of nematode-induced syncytia in roots of susceptible and resistant sugar beet. Protoplasma, 2000, 211, 39-50.	2.1	37
93	Plasmodiophora brassicae -induced expression of pyk20, an Arabidopsis thaliana gene with glutamine-rich domain. Physiological and Molecular Plant Pathology, 2000, 56, 79-84.	2.5	11
94	Promoter analysis of pyk20, a gene from Arabidopsis thaliana. Plant Science, 2000, 157, 245-255.	3.6	20
95	Ultrastructure of feeding plugs and feeding tubes formed by Heterodera schachtii. Nematology, 1999, 1, 363-374.	0.6	49
96	Localization of hydrogen peroxide during the defence response of Arabidopsis thaliana against the plant-parasitic nematode Heterodera glycines. Nematology, 1999, 1, 681-686.	0.6	61
97	Isolation of a gene from Arabidopsis thaliana related to nematode feeding structures. Gene, 1999, 239, 163-172.	2.2	25
98	In vivo observations of the arbuscular mycorrhizal fungus Glomus mosseae in roots by confocal laser scanning microscopy. Mycological Research, 1999, 103, 311-314.	2.5	20
99	Title is missing!. European Journal of Plant Pathology, 1998, 104, 545-551.	1.7	82
100	Isolation of regulatory DNA regions related to differentiation of nematode feeding structures inArabidopsis thaliana. Physiological and Molecular Plant Pathology, 1998, 53, 177-193.	2.5	14
101	Regulatory Sequences of Arabidopsis Drive Reporter Gene Expression in Nematode Feeding Structures. Plant Cell, 1997, 9, 2119.	6.6	1
102	Regulatory sequences of Arabidopsis drive reporter gene expression in nematode feeding structures Plant Cell, 1997, 9, 2119-2134.	6.6	99
103	Positional Cloning of a Gene for Nematode Resistance in Sugar Beet. Science, 1997, 275, 832-834.	12.6	451
104	Defence responses ofArabidopsis thalianaduring invasion and feeding site induction by the plant–parasitic nematodeHeterodera glycines. Physiological and Molecular Plant Pathology, 1997, 50, 419-429.	2.5	41
105	Title is missing!. European Journal of Plant Pathology, 1997, 103, 113-124.	1.7	62
106	Physiology of Nematode Feeding and Feeding Sites. Developments in Plant Pathology, 1997, , 107-119.	0.1	21
107	Changes in the structure ofArabidopsis thaliana during female development of the plant-parasitic nematodeHeterodera schachtii. Protoplasma, 1996, 194, 103-116.	2.1	167
108	Induction of Phloem Unloading in Arabidopsis thaliana Roots by the Parasitic Nematode Heterodera schachtii. Plant Physiology, 1996, 112, 1421-1427.	4.8	71

#	Article	IF	CITATIONS
109	Studies on the nutrient uptake by the beet cyst nematode <i>Heterodera schachtii</i> by <i>in situ</i> microinjection of fluorescent probes into the feeding structures in <i>Arabidopsis thaliana</i> . Parasitology, 1994, 109, 249-255.	1.5	126
110	Arabidopsis Thaliana and Heterodera Schachtii: A Versatile Model to Characterize the Interaction Between Host Plants and Cyst Nematodes. , 1994, , 171-180.		8
111	Seminar: Heterodera Schachtii and Arabidopsis Thaliana, a Model Host-Parasite Interaction. Nematologica, 1992, 38, 488-493.	0.2	40
112	The Parasitic Behaviour of Second-Stage Juveniles of Meloidogyne Incognita in Roots of Arabidopsis Thaliana. Nematologica, 1992, 38, 98-111.	0.2	202
113	Arabidopsis thalianaas a new model host for plant-parasitic nematodes. Plant Journal, 1991, 1, 245-254.	5.7	336
114	Arabidopsis thaliana as a new model host for plant-parasitic nematodes. Plant Journal, 1991, 1, 245-254.	5.7	22