Changli Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1485637/publications.pdf Version: 2024-02-01

CHANCILLI

#	Article	IF	CITATIONS
1	Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catalysis, 2020, 10, 4019-4047.	5.5	379
2	Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chemical Society Reviews, 2018, 47, 4981-5037.	18.7	344
3	The physics and chemistry of graphene-on-surfaces. Chemical Society Reviews, 2017, 46, 4417-4449.	18.7	309
4	Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. Nature Catalysis, 2020, 3, 932-940.	16.1	211
5	Positive onset potential and stability of Cu ₂ O-based photocathodes in water splitting by atomic layer deposition of a Ga ₂ O ₃ buffer layer. Energy and Environmental Science, 2015, 8, 1493-1500.	15.6	196
6	Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 22355-22363.	4.0	162
7	Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Energy and Environmental Science, 2020, 13, 3269-3306.	15.6	141
8	Scalable Low-Band-Gap Sb ₂ Se ₃ Thin-Film Photocathodes for Efficient Visible–Near-Infrared Solar Hydrogen Evolution. ACS Nano, 2017, 11, 12753-12763.	7.3	127
9	A Novel Method to Synthesize Highly Photoactive Cu ₂ O Microcrystalline Films for Use in Photoelectrochemical Cells. ACS Applied Materials & Interfaces, 2014, 6, 480-486.	4.0	107
10	Fabrication of high quality perovskite films by modulating the Pb–O bonds in Lewis acid–base adducts. Journal of Materials Chemistry A, 2017, 5, 8416-8422.	5.2	73
11	Sponge-like nickel phosphide–carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Research, 2017, 10, 415-425.	5.8	73
12	Solution-processed CuSbS2 thin film: A promising earth-abundant photocathode for efficient visible-light-driven hydrogen evolution. Nano Energy, 2016, 28, 135-142.	8.2	70
13	Enhanced performance of perovskite solar cells by modulating the Lewis acid–base reaction. Nanoscale, 2016, 8, 19804-19810.	2.8	62
14	Twin Structure in BiVO ₄ Photoanodes Boosting Water Oxidation Performance through Enhanced Charge Separation and Transport. Advanced Energy Materials, 2018, 8, 1802198.	10.2	61
15	CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing. Nanotechnology, 2015, 26, 305503.	1.3	50
16	Insights into the efficiency and stability of Cu-based nanowires for electrocatalytic oxygen evolution. Nano Research, 2018, 11, 4323-4332.	5.8	44
17	Tuning the Selectivity of Liquid Products of CO ₂ RR by Cu–Ag Alloying. ACS Applied Materials & Interfaces, 2022, 14, 11567-11574.	4.0	44
18	Facile synthesis of superhydrophobic surface of ZnO nanoflakes: chemical coating and UV-induced wettability conversion. Nanoscale Research Letters, 2012, 7, 216.	3.1	35

Changli Li

#	Article	IF	CITATIONS
19	Highly Efficient NiFe Nanoparticle Decorated Si Photoanode for Photoelectrochemical Water Oxidation. Chemistry of Materials, 2019, 31, 171-178.	3.2	34
20	Simultaneous enhancement of photovoltage and charge transfer in Cu2O-based photocathode using buffer and protective layers. Applied Physics Letters, 2016, 109, .	1.5	33
21	Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing. Nanotechnology, 2015, 26, 015503.	1.3	32
22	Oxygen-vacancy-induced photoelectrochemical water oxidation by platelike tungsten oxide photoanodes prepared under acid-mediated hydrothermal treatment conditions. RSC Advances, 2017, 7, 26992-27000.	1.7	32
23	Large area high-performance bismuth vanadate photoanode for efficient solar water splitting. Journal of Materials Chemistry A, 2020, 8, 3845-3850.	5.2	30
24	Electrolyzer and Catalysts Design from Carbon Dioxide to Carbon Monoxide Electrochemical Reduction. Electrochemical Energy Reviews, 2021, 4, 680-717.	13.1	26
25	Efficient photoelectrochemical water oxidation enabled by an amorphous metal oxide-catalyzed graphene/silicon heterojunction photoanode. Sustainable Energy and Fuels, 2018, 2, 663-672.	2.5	25
26	Design of pre-catalysts for heterogeneous CO ₂ electrochemical reduction. Journal of Materials Chemistry A, 2021, 9, 19508-19533.	5.2	24
27	Fullâ€Inorganic Thin Film Solar Cell and Photodetector Based on "Grapheneâ€onâ€Antimony Sulfide― Heterostructure. Solar Rrl, 2017, 1, 1700135.	3.1	20
28	Tailored NiFe Catalyst on Silicon Photoanode for Efficient Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2020, 124, 2844-2850.	1.5	19
29	Fabrication and ultraviolet photoresponse characteristics of ordered SnO x (x â‰^0.87, 1.45, 2) nanopore films. Nanoscale Research Letters, 2011, 6, 615.	3.1	15
30	Fabrication and centeracterization of ordered Culn(1â^'x)Ga x Se2 nanopore films via template-based electrodeposition. Nanoscale Research Letters, 2012, 7, 675.	3.1	15
31	Self-Assembly of Three-Dimensional SrTiO ₃ Microscale Superstructures and Their Photonic Effect. Inorganic Chemistry, 2013, 52, 2581-2587.	1.9	15
32	Rapid Liquid Recognition and Quality Inspection with Graphene Test Papers. Clobal Challenges, 2017, 1, 1700037.	1.8	15
33	Strategies To Construct <i>n</i> -Type Si-Based Heterojunctions for Photoelectrochemical Water Oxidation. , 2022, 4, 779-804.		10
34	Size control of CuInSe2 nanotube arrays via nanochannel-confined galvanic displacement. Journal of Materials Chemistry, 2011, 21, 17091.	6.7	8
35	Photoelectrochemical water oxidation performance promoted by a cupric oxide-hematite heterojunction photoanode. International Journal of Hydrogen Energy, 2020, 45, 33102-33110.	3.8	7
36	A High Precision Time Grating Displacement Sensor Based on Temporal and Spatial Modulation of Light-Field. Sensors, 2020, 20, 921.	2.1	7

Changli Li

#	Article	IF	CITATIONS
37	Template-based sputtering method for vertically aligned Tin nanotube arrays: From fabrication to superconductivity. Thin Solid Films, 2013, 542, 14-20.	0.8	3
38	Prediction of flooding velocity in packed towers using least squares support vector machine. , 2012, , .		1
39	Fullâ€Inorganic Thin Film Solar Cell and Photodetector Based on "Grapheneâ€onâ€Antimony Sulfide― Heterostructure (Solar RRL 12â^•2017). Solar Rrl, 2017, 1, 1770146.	3.1	1
40	Effect of triazene polymer film on the Ag micro-stripe prepared by LIIFT technology. , 2021, , .		0