Vyacheslav A Dyachuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1485571/publications.pdf

Version: 2024-02-01

47 papers

2,117 citations

430754 18 h-index 254106 43 g-index

49 all docs

49 docs citations

49 times ranked

2995 citing authors

#	Article	IF	Citations
1	Glial origin of mesenchymal stem cells in a tooth model system. Nature, 2014, 513, 551-554.	13.7	347
2	Spatiotemporal structure of cell fate decisions in murine neural crest. Science, 2019, 364, .	6.0	345
3	Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science, 2017, 357, .	6.0	251
4	Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science, 2014, 345, 82-87.	6.0	181
5	A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature, 2019, 567, 234-238.	13.7	153
6	Superficial cells are selfâ€renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. FASEB Journal, 2017, 31, 1067-1084.	0.2	92
7	Development of the larval muscle system in the mussel <i>Mytilus trossulus</i> (Mollusca, Bivalvia). Development Growth and Differentiation, 2009, 51, 69-79.	0.6	81
8	Nuclear alignment in myotubes requires centrosome proteins recruited by nesprin-1. Journal of Cell Science, 2016, 129, 4227-4237.	1.2	79
9	Schwann Cell Precursors Generate the Majority of Chromaffin Cells in Zuckerkandl Organ and Some Sympathetic Neurons in Paraganglia. Frontiers in Molecular Neuroscience, 2019, 12, 6.	1.4	65
10	Schwann cell precursors contribute to skeletal formation during embryonic development in mice and zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15068-15073.	3.3	51
11	Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. ELife, 2017, 6, .	2.8	46
12	Nervous system development in the Pacific oyster, Crassostrea gigas (Mollusca: Bivalvia). Frontiers in Zoology, 2018, 15, 10.	0.9	40
13	Photochromic Free MOFâ€Based Nearâ€Infrared Optical Switch. Angewandte Chemie - International Edition, 2020, 59, 15522-15526.	7.2	38
14	Identification of <i>β</i> integrinâ€like―and fibronectinâ€like proteins in the bivalve mollusk <i>Mytilus trossulus</i> . Development Growth and Differentiation, 2015, 57, 515-528.	0.6	33
15	Schwann cell precursors represent a neural crestâ€like state with biased multipotency. EMBO Journal, 2022, 41, .	3.5	28
16	Muscle and neuronal differentiation in primary cell culture of larval Mytilus trossulus (Mollusca:) Tj ETQq0 0 0 rgB	T Qverloc	:k 10 Tf 50 14
17	Hematopoiesis in Bivalvia larvae: Cellular origin, differentiation of hemocytes, and neoplasia. Developmental and Comparative Immunology, 2016, 65, 253-257.	1.0	26
18	Peripheral sensory neurons govern development of the nervous system in bivalve larvae. EvoDevo, 2019, 10, 22.	1.3	25

#	Article	IF	CITATIONS
19	Innervation of bivalve larval catch muscles by serotonergic and FMRF <scp>amidergic</scp> neurons. Acta Biologica Hungarica, 2012, 63, 221-229.	0.7	20
20	Expression of thick filament proteins during ontogenesis of the mussel Mytilus trossulus (Mollusca:) Tj ETQq0 0 0 238-244.		lock 10 Tf 5 19
21	Extracellular matrix is required for muscle differentiation in primary cell cultures of larval Mytilus trossulus (Mollusca: Bivalvia). Cytotechnology, 2013, 65, 725-735.	0.7	18
22	Modulation of Mytilus trossulus (Bivalvia: Mollusca) larval survival and growth in culture. Acta Biologica Hungarica, 2012, 63, 230-234.	0.7	12
23	Larval myogenesis in Echinodermata: conserved features and morphological diversity between classâ€specific larval forms of Echinoidae, Asteroidea, and Holothuroidea. Evolution & Development, 2013, 15, 5-17.	1.1	12
24	Does the frontal sensory organ in adults of the hoplonemertean Quasitetrastemma stimpsoni originate from the larval apical organ?. Frontiers in Zoology, 2020, 17, 2.	0.9	12
25	Parapodial glandular organs in <i>Owenia borealis</i> (Annelida: Oweniidae) and their possible relationship with nephridia. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2020, 334, 88-99.	0.6	11
26	Detailed morphology of tentacular apparatus and central nervous system in Owenia borealis (Annelida, Oweniidae). Zoological Letters, 2021, 7, 15.	0.7	11
27	The conformation of bovine serum albumin adsorbed to the surface of single allâ€dielectric nanoparticles following lightâ€induced heating. Journal of Biophotonics, 2018, 11, e201700322.	1.1	10
28	Distribution of Molecules Related to Neurotransmission in the Nervous System of the Mussel Crenomytilus grayanus. Frontiers in Neuroanatomy, 2020, 14, 35.	0.9	10
29	Novel Glial Cell Functions: Extensive Potency, Stem Cell-Like Properties, and Participation in Regeneration and Transdifferentiation. Frontiers in Cell and Developmental Biology, 2020, 8, 809.	1.8	9
30	The zebrafish model system for dyslipidemia and atherosclerosis research: Focus on environmental/exposome factors and genetic mechanisms. Metabolism: Clinical and Experimental, 2022, 129, 155138.	1.5	9
31	Development of the muscle system and contractile activity in the mussel Mytilus trossulus (Mollusca,) Tj ETQq $1\ 1$	0.784314 0.1	rgBT /Overl
32	Schwann cell precursors generate sympathoadrenal system during zebrafish development. Journal of Neuroscience Research, 2021, 99, 2540-2557.	1.3	6
33	Effect of Air Exposure-Induced Hypoxia on Neurotransmitters and Neurotransmission Enzymes in Ganglia of the Scallop Azumapecten farreri. International Journal of Molecular Sciences, 2022, 23, 2027.	1.8	6
34	Appearance of Muscle Proteins in Ontogenesis of the Mussel Mytilus trossulus (Bivalvia). Russian Journal of Marine Biology, 2005, 31, 327-330.	0.2	5
35	Molluscan catch muscle myorod and its N-terminal peptide bind to F-actin and myosin in a phosphorylation-dependent manner. Archives of Biochemistry and Biophysics, 2011, 509, 59-65.	1.4	5
36	Reversible and Irreversible Laser Interference Patterning of MOF Thin Films. Crystals, 2022, 12, 846.	1.0	5

#	Article	IF	CITATIONS
37	Extracellular Matrix Components in Bivalvia: Shell and ECM Components in Developmental and Adult Tissues. Fisheries and Aquaculture Journal, 2018, 09, .	0.2	4
38	Localization of neurons expressing choline acetyltransferase, serotonin and/or FMRFamide in the central nervous system of the decapod shore crab Hemigrapsus sanguineus. Cell and Tissue Research, 2021, 383, 959-977.	1.5	3
39	Heterogeneity and Potency of Peripheral Glial Cells in Embryonic Development and Adults. Frontiers in Molecular Neuroscience, 2022, 15, 737949.	1.4	3
40	First Immunodetection of Sensory and Nervous Systems of Parasitic Larvae (Glochidia) of Freshwater Bivalve Nodularia douglasiae. Frontiers in Physiology, 2022, 13, 879540.	1.3	3
41	Vascular region-specific changes in arterial tone in rats with type 2 diabetes mellitus: Opposite responses of mesenteric and femoral arteries to acetylcholine and 5-hydroxytryptamine. Life Sciences, 2021, 286, 120011.	2.0	2
42	Are myoepithelial cells confined to genital coelomic sinus in the gonads of sea stars?. Tissue and Cell, 2022, 76, 101757.	1.0	2
43	Immunocytochemical Localization of Enzymes Involved in Dopamine, Serotonin, and Acetylcholine Synthesis in the Optic Neuropils and Neuroendocrine System of Eyestalks of Paralithodes camtschaticus. Frontiers in Neuroanatomy, 2022, 16, 844654.	0.9	2
44	Expression of several domains of twitchin and myorod in the ontogeny of the mussel Mytilus trossulus. Biophysics (Russian Federation), 2010, 55, 693-698.	0.2	1
45	Nuclear alignment in myotubes requires centrosome proteins recruited by nesprin-1. Development (Cambridge), 2016, 143, e1.1-e1.1.	1.2	O
46	A new approach for immunostaining nervous systems in isolated organs and whole animals. AIP Conference Proceedings, 2020, , .	0.3	0
47	Characterization of Neurodevelopment in Larvae of the Protobranch Acila insignis (Gould, 1861) in Order to Reconstruct the Last Common Ancestor of Bivalves. Malacologia, 2022, 64, .	0.2	O