Dmitriy A Dikin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1485439/publications.pdf

Version: 2024-02-01

44 papers 35,216 citations

28 h-index

185998

42 g-index

45 all docs 45 docs citations

45 times ranked

36649 citing authors

#	Article	IF	CITATIONS
1	Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45, 1558-1565.	5.4	12,577
2	Graphene-based composite materials. Nature, 2006, 442, 282-286.	13.7	11,655
3	Preparation and characterization of graphene oxide paper. Nature, 2007, 448, 457-460.	13.7	5,074
4	Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at "Low―Temperatures. Nano Letters, 2008, 8, 4283-4287.	4.5	820
5	Grapheneâ^'Silica Composite Thin Films as Transparent Conductors. Nano Letters, 2007, 7, 1888-1892.	4.5	813
6	Electrically Conductive "Alkylated―Graphene Paper via Chemical Reduction of Amineâ€Functionalized Graphene Oxide Paper. Advanced Materials, 2010, 22, 892-896.	11.1	568
7	Graphene Oxide Sheets Chemically Cross-Linked by Polyallylamine. Journal of Physical Chemistry C, 2009, 113, 15801-15804.	1.5	483
8	Mechanics of a Carbon Nanocoil. Nano Letters, 2003, 3, 1299-1304.	4.5	333
9	Chemically Active Reduced Graphene Oxide with Tunable C/O Ratios. ACS Nano, 2011, 5, 4380-4391.	7.3	330
10	Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets. Nano Letters, 2007, 7, 3569-3575.	4.5	311
11	Polymerâ^'Graphite Nanocomposites:  Effective Dispersion and Major Property Enhancement via Solid-State Shear Pulverization. Macromolecules, 2008, 41, 1905-1908.	2.2	273
12	Reduction Kinetics of Graphene Oxide Determined by Electrical Transport Measurements and Temperature Programmed Desorption. Journal of Physical Chemistry C, 2009, 113, 18480-18486.	1.5	207
13	Crystalline Boron Nanoribbons:  Synthesis and Characterization. Nano Letters, 2004, 4, 963-968.	4. 5	206
14	Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nature Nanotechnology, 2011, 6, 651-657.	15.6	197
15	Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry. Journal of Physical Chemistry C, 2008, 112, 8499-8506.	1.5	196
16	Systematic Post-assembly Modification of Graphene Oxide Paper with Primary Alkylamines. Chemistry of Materials, 2010, 22, 4153-4157.	3.2	164
17	Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials. Computational Materials Science, 2014, 85, 206-216.	1.4	137
18	Computational microstructure characterization and reconstruction for stochastic multiscale material design. CAD Computer Aided Design, 2013, 45, 65-76.	1.4	118

#	Article	IF	CITATIONS
19	Drop-Casted Self-Assembling Graphene Oxide Membranes for Scanning Electron Microscopy on Wet and Dense Gaseous Samples. ACS Nano, 2011, 5, 10047-10054.	7.3	115
20	Structure Evolution and Thermoelectric Properties of Carbonized Polydopamine Thin Films. ACS Applied Materials & Samp; Interfaces, 2017, 9, 6655-6660.	4.0	77
21	Epoxide Speciation and Functional Group Distribution in Graphene Oxide Paperâ€Like Materials. Advanced Functional Materials, 2012, 22, 3950-3957.	7.8	73
22	High Conductivity, High Strength Solid Electrolytes Formed by in Situ Encapsulation of Ionic Liquids in Nanofibrillar Methyl Cellulose Networks. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13426-13436.	4.0	67
23	Realization of nanoscale resolution with a micromachined thermally actuated testing stage. Review of Scientific Instruments, 2004, 75, 2154-2162.	0.6	50
24	Electrical and mechanical properties of poly(dopamine)-modified copper/reduced graphene oxide composites. Journal of Materials Science, 2017, 52, 11620-11629.	1.7	45
25	Utilizing real and statistically reconstructed microstructures for the viscoelastic modeling of polymer nanocomposites. Composites Science and Technology, 2012, 72, 1725-1732.	3.8	40
26	Microsystem for nanofiber electromechanical measurements. Sensors and Actuators A: Physical, 2009, 155, 1-7.	2.0	35
27	Electrostatic-Force-Directed Assembly of Ag Nanocrystals onto Vertically Aligned Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 17919-17922.	1.5	33
28	In situ mechanical testing of templated carbon nanotubes. Review of Scientific Instruments, 2006, 77, 125101.	0.6	30
29	RIPENING OF SILVER NANOPARTICLES ON CARBON NANOTUBES. Nano, 2007, 02, 149-156.	0.5	26
30	Spontaneous Periodic Delamination of Thin Films To Form Crack-Free Metal and Silicon Ribbons with High Stretchability. ACS Applied Materials & Interfaces, 2017, 9, 44938-44947.	4.0	24
31	Pilot study on biocompatibility of fluorescent nanodiamond-(NV)-Z-800 particles in rats: safety, pharmacokinetics, and bio-distribution (part III). International Journal of Nanomedicine, 2018, Volume 13, 5449-5468.	3.3	24
32	Controllable Patterning and CVD Growth of Isolated Carbon Nanotubes with Direct Parallel Writing of Catalyst Using Dipâ€Pen Nanolithography. Small, 2009, 5, 2523-2527.	5.2	21
33	A Selfâ€Binding, Meltâ€Castable, Crystalline Organic Electrolyte for Sodium Ion Conduction. Angewandte Chemie - International Edition, 2016, 55, 15254-15257.	7.2	21
34	Preparation and electrical properties of sintered copper powder compacts modified by polydopamine-derived carbon nanofilms. Journal of Materials Science, 2018, 53, 6562-6573.	1.7	16
35	Lamellar, micro-phase separated blends of methyl cellulose and dendritic polyethylene glycol, POSS-PEG. Carbohydrate Polymers, 2016, 136, 19-29.	5.1	12
36	Improving Interlayer Adhesion of Poly(p-phenylene terephthalamide) (PPTA)/Ultra-high-molecular-weight Polyethylene (UHMWPE) Laminates Prepared by Plasma Treatment and Hot Pressing Technique. Polymers, 2021, 13, 2600.	2.0	9

#	Article	IF	CITATION
37	Interchangeable Stage and Probe Mechanisms for Microscale Universal Mechanical Tester. Journal of Microelectromechanical Systems, 2012, 21, 458-466.	1.7	7
38	Structure-Mechanical Property Relations of Skin-Core Regions of Poly(p-phenylene terephthalamide) Single Fiber. Scientific Reports, 2019, 9, 740.	1.6	7
39	A Selfâ€Binding, Meltâ€Castable, Crystalline Organic Electrolyte for Sodium Ion Conduction. Angewandte Chemie, 2016, 128, 15480-15483.	1.6	6
40	Unravelling the structural and dynamical complexity of the equilibrium liquid grain-binding layer in highly conductive organic crystalline electrolytes. Journal of Materials Chemistry A, 2018, 6, 4394-4404.	5.2	6
41	Microstructure Reconstruction for Stochastic Multiscale Material Design. , 2011, , .		5
42	A Novel Way to Go Whole Cell in Patch-Clamp Experiments. IEEE Transactions on Biomedical Engineering, 2010, 57, 2764-2770.	2.5	4
43	Intrinsic resonance properties of thin superconducting film in non-Josephson oscillation regime. European Physical Journal D, 1996, 46, 625-626.	0.4	O
44	Conductivity of low-and high-Tc metal-type superconducting weak-links under electromagnetic field irradiation. European Physical Journal D, 1996, 46, 679-680.	0.4	O