Joel F Destino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1485240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3Dâ€Printed Transparent Glass. Advanced Materials, 2017, 29, 1701181.	11.1	177
2	3D Printed Optical Quality Silica and Silica–Titania Glasses from Sol–Gel Feedstocks. Advanced Materials Technologies, 2018, 3, 1700323.	3.0	74
3	At-Home Colorimetric and Absorbance-Based Analyses: An Opportunity for Inquiry-Based, Laboratory-Style Learning. Journal of Chemical Education, 2020, 97, 2960-2966.	1.1	53
4	Growth mechanism of largescale MoS ₂ monolayer by sulfurization of MoO ₃ film. Materials Research Express, 2016, 3, 075009.	0.8	42
5	Predicting Nanoparticle Suspension Viscoelasticity for Multimaterial 3D Printing of Silica–Titania Glass. ACS Applied Nano Materials, 2018, 1, 4038-4044.	2.4	39
6	Additive Manufacturing of Optical Quality Germania–Silica Glasses. ACS Applied Materials & Interfaces, 2020, 12, 6736-6741.	4.0	39
7	Spectroscopic Characteristics of Carbon Dots (C-Dots) Derived from Carbon Fibers and Conversion to Sulfur-Bridged C-Dots Nanosheets. Applied Spectroscopy, 2015, 69, 1082-1090.	1.2	24
8	Two-Dimensional Graphene as a Matrix for MALDI Imaging Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2015, 26, 1963-1966.	1.2	24
9	Subsurface mechanical damage correlations after grinding of various optical materials. Optical Engineering, 2019, 58, 1.	0.5	15
10	Multivariate analysis of attachment of biofouling organisms in response to material surface characteristics. Biointerphases, 2017, 12, 051003.	0.6	13
11	Hands-on experiences for remotely taught analytical chemistry laboratories. Analytical and Bioanalytical Chemistry, 2021, 413, 1237-1244.	1.9	13
12	Influence of partial charge on the material removal rate during chemical polishing. Journal of the American Ceramic Society, 2019, 102, 1566-1578.	1.9	10
13	Probing Nanoscale Chemical Segregation and Surface Properties of Antifouling Hybrid Xerogel Films. Langmuir, 2015, 31, 3510-3517.	1.6	8
14	Sapphire advanced mitigation process: wet etch to expose sub-surface damage and increase laser damage resistance and mechanical strength. Applied Optics, 2020, 59, 1602.	0.9	7
15	Robust pH-responsive group IV metal oxide functionalized porous silicon platforms. Materials Letters, 2016, 181, 47-51.	1.3	6
16	Students' Attitudes on Remote-Flexible Instrumental Analysis Laboratory Experiments During COVID-19. Journal of Chemical Education, 2022, 99, 1820-1825.	1.1	5
17	Silica-Encapsulated Germania Colloids as 3D-Printable Glass Precursors. ACS Omega, 2022, 7, 17492-17500.	1.6	5
18	Analytical Chemistry in Context. ACS Symposium Series, 0, , 83-105.	0.5	4

#	Article	IF	CITATIONS
19	Hybrid Sol–Gel-Derived Films That Spontaneously Form Complex Surface Topographies. Langmuir, 2016, 32, 10113-10119.	1.6	2
20	Three-Dimensional pH Mapping within Model Hybrid Xerogel Thin Films. Langmuir, 2017, 33, 4119-4128.	1.6	1
21	Predictive models for grinding & polishing of various optical materials. , 2019, , .		1

22 Silica: 3D Printed Optical Quality Silica and Silica-Titania Glasses from Sol-Gel Feedstocks (Adv. Mater.) Tj ETQq0 0 0 grgBT /Overlock 10 T