
Rita Giovannetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1485032/publications.pdf Version: 2024-02-01

RITA CIOVANNIETTI

#	Article	IF	CITATIONS
1	Metallic Effects on p-Hydroxyphenyl Porphyrin Thin-Film-Based Planar Optical Waveguide Gas Sensor: Experimental and Computational Studies. Nanomaterials, 2022, 12, 944.	4.1	6
2	May sediments affect the inhibiting properties of NaCl on CH4 and CO2 hydrates formation? an experimental report. Journal of Molecular Liquids, 2022, 359, 119300.	4.9	12
3	Observation of the Main Natural Parameters Influencing the Formation of Gas Hydrates. Energies, 2021, 14, 1803.	3.1	27
4	Determination of the refractive index and wavelengthâ€dependent optical properties of fewâ€layer CrCl within the Fresnel formalism. Journal of Microscopy, 2021, 283, 145-150.	1.8	5
5	Biogenic Synthesis of Copper Nanoparticles Using Bacterial Strains Isolated from an Antarctic Consortium Associated to a Psychrophilic Marine Ciliate: Characterization and Potential Application as Antimicrobial Agents. Marine Drugs, 2021, 19, 263.	4.6	53
6	Sensing Behavior of Metal-Free Porphyrin and Zinc Phthalocyanine Thin Film towards Xylene-Styrene and HCl Vapors in Planar Optical Waveguide. Nanomaterials, 2021, 11, 1634.	4.1	7
7	Silver Nanoparticle-Based Sensor for the Selective Detection of Nickel Ions. Nanomaterials, 2021, 11, 1733.	4.1	27
8	Substituent Effect on Porphyrin Film-Gas Interaction by Optical Waveguide: Spectrum Analysis and Molecular Dynamic Simulation. Materials, 2020, 13, 5613.	2.9	5
9	Optimization of the Extraction from Spent Coffee Grounds Using the Desirability Approach. Antioxidants, 2020, 9, 370.	5.1	16
10	Tuning of hydrogen peroxide etching during the synthesis of silver nanoparticles. An application of triangular nanoplates as plasmon sensors for Hg2+ in aqueous solution. Journal of Molecular Liquids, 2020, 309, 113238.	4.9	33
11	SERS Activity of Silver Nanosphere, Triangular Nanoplates, Hexagonal Nanoplates and Quasi-Spherical Nanoparticles: Effect of Shape and Morphology. Coatings, 2020, 10, 288.	2.6	37
12	Chemical and Sensory Profiling of Monovarietal Extra Virgin Olive Oils from the Italian Marche Region. Antioxidants, 2020, 9, 330.	5.1	8
13	Reduced Graphene Oxide-NiO Photocathodes for p-Type Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2019, 2, 7345-7353.	5.1	15
14	Enhancement of visible-light photoactivity by polypropylene coated plasmonic Au/TiO2 for dye degradation in water solution. Applied Surface Science, 2018, 441, 575-587.	6.1	78
15	Aggregation and metal-complexation behaviour of THPP porphyrin in ethanol/water solutions as function of pH. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 235-248.	3.9	29
16	Reduced Graphene Oxide/TiO2 Nanocomposite: From Synthesis to Characterization for Efficient Visible Light Photocatalytic Applications. Catalysts, 2018, 8, 598.	3.5	55
17	Band Gap Implications on Nano-TiO2 Surface Modification with Ascorbic Acid for Visible Light-Active Polypropylene Coated Photocatalyst. Nanomaterials, 2018, 8, 599.	4.1	44
18	Circulation path of thermal waters within the Laga foredeep basin inferred from chemical and isotopic (δ180, Î'D, 3H, 87Sr/86Sr) data. Applied Geochemistry, 2017, 78, 23-34.	3.0	20

RITA GIOVANNETTI

#	Article	IF	CITATIONS
19	Recent Advances in Graphene Based TiO2 Nanocomposites (GTiO2Ns) for Photocatalytic Degradation of Synthetic Dyes. Catalysts, 2017, 7, 305.	3.5	124
20	Hair Microelement Profile as a Prognostic Tool in Parkinson's Disease. Toxics, 2016, 4, 27.	3.7	6
21	Metal and Microelement Biomarkers of Neurodegeneration in Early Life Permethrin-Treated Rats. Toxics, 2016, 4, 3.	3.7	6
22	Kinetic Model for Simultaneous Adsorption/Photodegradation Process of Alizarin Red S in Water Solution by Nano-TiO2 under Visible Light. Catalysts, 2016, 6, 84.	3.5	17
23	Exfoliation of graphite into graphene in aqueous solution: an application as graphene/TiO ₂ nanocomposite to improve visible light photocatalytic activity. RSC Advances, 2016, 6, 93048-93055.	3.6	26
24	Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water. Scientific Reports, 2016, 5, 17801.	3.3	49
25	Preparation of Polyethylene Composites Containing Silver(I) Acylpyrazolonato Additives and SAR Investigation of their Antibacterial Activity. ACS Applied Materials & Interfaces, 2016, 8, 29676-29687.	8.0	24
26	Spectroscopic studies of porphyrin functionalized multiwalled carbon nanotubes and their interaction with TiO2 nanoparticles surface. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 22-29.	3.9	20
27	Kinetic evidence for the effect of salts on the oxygen solubility using laboratory prototype aeration system. Journal of Molecular Liquids, 2015, 211, 656-666.	4.9	7
28	Ni Mg Mixed Metal Oxides for p-Type Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 24556-24565.	8.0	34
29	Equilibrium and Kinetic Aspects in the Sensitization of Monolayer Transparent TiO ₂ Thin Films with Porphyrin Dyes for DSSC Applications. International Journal of Photoenergy, 2014, 2014, 1-9.	2.5	14
30	HPLC-DAD-ESI/MS Identification of Light Harvesting and Light Screening Pigments in the Lake Sediments at Edmonson Point. Scientific World Journal, The, 2013, 2013, 1-9.	2.1	8
31	Aggregation behaviour of a tetracarboxylic porphyrin in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 211, 108-114.	3.9	27
32	Spectral and kinetic investigation on oxidation and reduction of water soluble porphyrin–manganese(III) complex. Inorganica Chimica Acta, 2010, 363, 1561-1567.	2.4	11
33	Application of Cu(ii) and Zn(ii) coproporphyrins as sensitizers for thin film dye sensitized solar cells. Energy and Environmental Science, 2010, 3, 956.	30.8	37
34	Structure investigations of binary azeotrope of diethyl amine–acetone by FT-IR and 1H NMR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 72, 390-393.	3.9	5
35	Kinetic model for astaxanthin aggregation in water–methanol mixtures. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 157-162.	3.9	24
36	Remarks on the reactions of a tetracarboxylic porphyrin with gold and silver ions: A spectrophotometric, TEM and SEM study. Polyhedron, 2008, 27, 1047-1053.	2.2	6

RITA GIOVANNETTI

#	Article	IF	CITATIONS
37	Reactions of anionic porphyrin with group 11 elements: a spectrophotometric and electrospray ionization mass spectrometry study. Talanta, 2004, 63, 857-864.	5.5	16
38	DETERMINATION OF STABILITY CONSTANTS OF Cu(II), Co(II), Zn(II), Ni(II) AND Mn(II) CHELATES WITH 3,8,13,18-TETRAMETHYL-21H,23H-PORPHINE-2,7,12,17-TETRAPROPIONIC ACID BY REVERSED-PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. Journal of Liquid Chromatography and Related Technologies, 1999, 22, 2151-2157.	1.0	3
39	Study of Solvent Extraction of Mercury(II) with Dibenzo-18-Crown-6 from Hydrochloric Acid Solution into Benzene. Journal of Chemical Research Synopses, 1999, , 299-299.	0.3	Ο
40	Kinetics of the Metallation of Coproporphyrin-I in Water with Cadmium(II) and Manganese(II). Journal of Porphyrins and Phthalocyanines, 1998, 02, 139-144.	0.8	5
41	Kinetic and equilibrium studies on mercury(II)-coproporphyrin-I. Metal ion exchange reaction with cobalt(II) and application to determination of trace mercury(II). Talanta, 1998, 46, 977-984.	5.5	9
42	Kinetic Evidence for the Mechanism of the Metal-substitution Reaction of Lead(ii)-porphyrin with Cobalt(ii). Journal of Chemical Research Synopses, 1998, , 680-680.	0.3	1
43	High-Performance Liquid Chromatographic Determination of Mn(II), Co(II), Zn(II), Ni(II), Cu(II) As Coproporphyrin-I Complexes. Journal of Liquid Chromatography and Related Technologies, 1998, 21, 2607-2617.	1.0	4
44	Spectrophotometric study of coproporphyrin-I complexes of copper(II) and cobalt(II). Talanta, 1995, 42, 1913-1918.	5.5	22
45	The Use of Spectrophotometry UV-Vis for the Study of Porphyrins. , 0, , .		62
46	Fatty acid composition, squalene and elements in apple by-products: comparison between ancient cultivars and commercial varieties. European Food Research and Technology, 0, , 1.	3.3	0