Tatjana Piotrowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1484379/publications.pdf

Version: 2024-02-01

33 papers

1,936 citations

331670 21 h-index 30 g-index

44 all docs

44 docs citations

44 times ranked 2030 citing authors

#	Article	IF	Citations
1	Single-cell transcriptome analysis reveals three sequential phases of gene expression during zebrafish sensory hair cell regeneration. Developmental Cell, 2022, 57, 799-819.e6.	7.0	34
2	Adaptive cell invasion maintains lateral line organ homeostasis in response to environmental changes. Developmental Cell, 2021, 56, 1296-1312.e7.	7.0	17
3	Evolutionary Origin and Nomenclature of Vertebrate <i>Wnt11</i> -Family Genes. Zebrafish, 2019, 16, 469-476.	1.1	12
4	PCP and Wnt pathway components act in parallel during zebrafish mechanosensory hair cell orientation. Nature Communications, 2019, 10, 3993.	12.8	38
5	Comparing Sensory Organs to Define the Path for Hair Cell Regeneration. Annual Review of Cell and Developmental Biology, 2019, 35, 567-589.	9.4	26
6	scRNA-Seq reveals distinct stem cell populations that drive hair cell regeneration after loss of Fgf and Notch signaling. ELife, 2019, 8 , .	6.0	130
7	In toto imaging of the migrating Zebrafish lateral line primordium at single cell resolution. Developmental Biology, 2017, 422, 14-23.	2.0	21
8	Retinoic acid is required and Fgf, Wnt, and Bmp signaling inhibit posterior lateral line placode induction in zebrafish. Developmental Biology, 2017, 431, 215-225.	2.0	11
9	Proliferation-independent regulation of organ size by Fgf/Notch signaling. ELife, 2017, 6, .	6.0	40
10	Localized Gene Induction by Infrared-Mediated Heat Shock. Zebrafish, 2016, 13, 537-540.	1.1	2
11	Glypican4 modulates lateral line collective cell migration non cell-autonomously. Developmental Biology, 2016, 419, 321-335.	2.0	12
12	Insights into sensory hair cell regeneration from the zebrafish lateral line. Current Opinion in Genetics and Development, 2016, 40, 32-40.	3.3	82
13	Identification of Wnt Genes Expressed in Neural Progenitor Zones during Zebrafish Brain Development. PLoS ONE, 2015, 10, e0145810.	2.5	37
14	Heparan Sulfate Proteoglycans Regulate Fgf Signaling and Cell Polarity during Collective Cell Migration. Cell Reports, 2015, 10, 414-428.	6.4	50
15	Regeneration of Sensory Hair Cells Requires Localized Interactions between the Notch and Wnt Pathways. Developmental Cell, 2015, 34, 267-282.	7.0	117
16	Sensory hair cell regeneration in the zebrafish lateral line. Developmental Dynamics, 2014, 243, 1187-1202.	1.8	98
17	The development of lateral line placodes: Taking a broader view. Developmental Biology, 2014, 389, 68-81.	2.0	55
18	Gene-expression analysis of hair cell regeneration in the zebrafish lateral line. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1383-92.	7.1	151

#	Article	IF	CITATIONS
19	ErbB expressing Schwann cells control lateral line progenitor cells via non-cell-autonomous regulation of Wnt/ \hat{l}^2 -catenin. ELife, 2014, 3, e01832.	6.0	50
20	Hypoxia Disruption of Vertebrate CNS Pathfinding through EphrinB2 Is Rescued by Magnesium. PLoS Genetics, 2012, 8, e1002638.	3.5	32
21	Wnt/ \hat{l}^2 -catenin dependent cell proliferation underlies segmented lateral line morphogenesis. Developmental Biology, 2011, 349, 470-482.	2.0	78
22	Cell-cell signaling interactions coordinate multiple cell behaviors that drive morphogenesis of the lateral line. Cell Adhesion and Migration, 2011, 5, 499-508.	2.7	40
23	Migrating Placodes give rise to the Lateral Line System. FASEB Journal, 2011, 25, 184.2.	0.5	0
24	Loss of <i>adenomatous polyposis coli</i> (<i>apc</i>) results in an expanded ciliary marginal zone in the zebrafish eye. Developmental Dynamics, 2010, 239, 2066-2077.	1.8	19
25	Cell migration during morphogenesis. Developmental Biology, 2010, 341, 20-33.	2.0	258
26	Multiple signaling interactions coordinate collective cell migration of the posterior lateral line primordium. Cell Adhesion and Migration, 2009, 3, 365-368.	2.7	30
27	Wnt/ \hat{l}^2 -Catenin and Fgf Signaling Control Collective Cell Migration by Restricting Chemokine Receptor Expression. Developmental Cell, 2008, 15, 749-761.	7.0	228
28	Retinoic acid is required for endodermal pouch morphogenesis and not for pharyngeal endoderm specification. Developmental Dynamics, 2006, 235, 2695-2709.	1.8	76
29	Retinoic acid is required for endodermal pouch morphogenesis and not for pharyngeal endoderm specification. Developmental Dynamics, 2006, 235, spc1-spc1.	1.8	0
30	Regulation of Latent Sensory Hair Cell Precursors by Glia in the Zebrafish Lateral Line. Neuron, 2005, 45, 69-80.	8.1	119
31	How the lateral line gets its glia. Trends in Neurosciences, 2002, 25, 544-546.	8.6	3
32	The Embryonic and Larval Development of <i>Polypterus senegalus</i> Cuvier, 1829: its Staging with Reference to External and Skeletal Features, Behaviour and Locomotory Habits. Acta Zoologica, 1997, 78, 309-328.	0.8	62
33	The Cranial Nerves of the Senegal Bichir, <i>Polypterus senegalus </i> [Osteichthyes: Actinopterygii: Cladistia]; pp. 79–102. Brain, Behavior and Evolution, 1996, 47, 79-102.	1.7	3