
Houbin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1484214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nature Genetics, 2022, 54, 73-83.	21.4	88
2	Changes in Homogalacturonan Metabolism in Banana Peel during Fruit Development and Ripening. International Journal of Molecular Sciences, 2022, 23, 243.	4.1	5
3	Identification of Chilling Accumulation-Associated Genes for Litchi Flowering by Transcriptome-Based Genome-Wide Association Studies. Frontiers in Plant Science, 2022, 13, 819188.	3.6	1
4	Genome-Wide Identification of Banana Csl Gene Family and Their Different Responses to Low Temperature between Chilling-Sensitive and Tolerant Cultivars. Plants, 2021, 10, 122.	3.5	12
5	Metabolomics Analysis of Litchi Leaves during Floral Induction Reveals Metabolic Improvement by Stem Girdling. Molecules, 2021, 26, 4048.	3.8	5
6	Genome-Wide Identification and Expression Analysis of MADS-Box Family Genes in Litchi (Litchi) Tj ETQq0 0 0 rg	BT <u> Q</u> verlo	ck_{13}^{10} Tf 50 5
7	Development of molecular markers based on the promoter difference of LcFT1 to discriminate easy- and difficult-flowering litchi germplasm resources and its application in crossbreeding. BMC Plant Biology, 2021, 21, 539.	3.6	6
8	Acceleration of Carbon Fixation in Chilling-Sensitive Banana under Mild and Moderate Chilling Stresses. International Journal of Molecular Sciences, 2020, 21, 9326.	4.1	1
9	Genome-Wide Transcriptomic Analysis Reveals a Regulatory Network of Oxidative Stress-Induced Flowering Signals Produced in Litchi Leaves. Genes, 2020, 11, 324.	2.4	9
10	Genome-wide analyses of banana fasciclin-like AGP genes and their differential expression under low-temperature stress in chilling sensitive and tolerant cultivars. Plant Cell Reports, 2020, 39, 693-708.	5.6	17
11	Identification of Genes Involved in Low Temperature-Induced Senescence of Panicle Leaf in Litchi chinensis. Genes, 2019, 10, 111.	2.4	2
12	Genome-wide transcriptome analysis reveals the molecular mechanism of high temperature-induced floral abortion in Litchi chinensis. BMC Genomics, 2019, 20, 127.	2.8	15
13	Functional analysis of a homologue of the FLORICAULA/LEAFY gene in litchi (Litchi chinensis Sonn.) revealing its significance in early flowering process. Genes and Genomics, 2018, 40, 1259-1267.	1.4	10
14	Litchi Flowering is Regulated by Expression of Short Vegetative Phase Genes. Journal of the American Society for Horticultural Science, 2018, 143, 101-109.	1.0	4

15	Comparative Digital Gene Expression Analysis of Tissue-Cultured Plantlets of Highly Resistant and Susceptible Banana Cultivars in Response to Fusarium oxysporum. International Journal of Molecular Sciences, 2018, 19, 350.	4.1	24
16	Reactive oxygen species and nitric oxide induce senescence of rudimentary leaves and the expression profiles of the related genes in Litchi chinensis. Horticulture Research, 2018, 5, 23.	6.3	21
17	LcMCII-1 is involved in the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis. Plant Cell Reports, 2017, 36, 89-102.	5.6	11

¹⁸Expression and distribution of extensins and AGPs in susceptible and resistant banana cultivars in
response to wounding and Fusarium oxysporum. Scientific Reports, 2017, 7, 42400.3.330

HOUBIN CHEN

#	Article	IF	CITATIONS
19	RNA-seq analysis of apical meristem reveals integrative regulatory network of ROS and chilling potentially related to flowering in Litchi chinensis. Scientific Reports, 2017, 7, 10183.	3.3	15
20	Transcriptome profiling of litchi leaves in response to low temperature reveals candidate regulatory genes and key metabolic events during floral induction. BMC Genomics, 2017, 18, 363.	2.8	13
21	Integrative effect of drought and low temperature on litchi (Litchi chinensis Sonn.) floral initiation revealed by dynamic genome-wide transcriptome analysis. Scientific Reports, 2016, 6, 32005.	3.3	27
22	Variable content and distribution of arabinogalactan proteins in banana (Musa spp.) under low temperature stress. Frontiers in Plant Science, 2015, 6, 353.	3.6	26
23	Promoter difference of LcFT1 is a leading cause of natural variation of flowering timing in different litchi cultivars (Litchi chinensis Sonn.). Plant Science, 2015, 241, 128-137.	3.6	31
24	De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genomics, 2014, 15, 805.	2.8	65
25	A systematic comparison of embryogenic and non-embryogenic cells of banana (Musa spp. AAA): Ultrastructural, biochemical and cell wall component analyses. Scientia Horticulturae, 2013, 159, 178-185.	3.6	9
26	Wound-induced pectin methylesterases enhance banana (Musa spp. AAA) susceptibility to Fusarium oxysporum f. sp. cubense. Journal of Experimental Botany, 2013, 64, 2219-2229.	4.8	33
27	Histological changes and differences in activities of some antioxidant enzymes and hydrogen peroxide content during somatic embryogenesis of Musa AAA cv. Yueyoukang 1. Scientia Horticulturae, 2012, 144, 87-92.	3.6	22
28	Ultrastructural changes and the distribution of arabinogalactan proteins during somatic embryogenesis of banana (<i>Musa</i> spp. AAA cv. †Yueyoukang 1'). Physiologia Plantarum, 2011, 142, 372-389.	5.2	43
29	Rudimentary leaf abortion with the development of panicle in litchi: Changes in ultrastructure, antioxidant enzymes and phytohormones. Scientia Horticulturae, 2008, 117, 288-296.	3.6	18