Stephen Carpenter

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1484196/stephen-carpenter-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

69,779 264 275 93 h-index g-index citations papers 79,671 284 7.75 7.9 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
275	Estimating pelagic primary production in lakes: Comparison of 14 C incubation and free-water O 2 approaches. <i>Limnology and Oceanography: Methods</i> , 2022 , 20, 34-45	2.6	2
274	Earth stewardship: Shaping a sustainable future through interacting policy and norm shifts <i>Ambio</i> , 2022 , 1	6.5	2
273	Evaluating the performance of temporal and spatial early warning statistics of algal blooms <i>Ecological Applications</i> , 2022 , e2616	4.9	
272	Our future in the Anthropocene biosphere. <i>Ambio</i> , 2021 , 50, 834-869	6.5	78
271	Phytoplankton biomass, dissolved organic matter, and temperature drive respiration in whole lake nutrient additions. <i>Limnology and Oceanography</i> , 2021 , 66, 2174-2186	4.8	1
270	Resilience: insights from the U.S. LongTerm Ecological Research Network. <i>Ecosphere</i> , 2021 , 12, e03434	3.1	4
269	Exit time as a measure of ecological resilience. <i>Science</i> , 2021 , 372,	33.3	14
268	Climate and food web effects on the spring clear-water phase in two north-temperate eutrophic lakes. <i>Limnology and Oceanography</i> , 2021 , 66, 30-46	4.8	4
267	Governance in the Face of Extreme Events: Lessons from Evolutionary Processes for Structuring Interventions, and the Need to Go Beyond. <i>Ecosystems</i> , 2021 , 1-15	3.9	3
266	Spatial and temporal variability of future ecosystem services in an agricultural landscape. Landscape Ecology, 2020 , 35, 2569-2586	4.3	6
265	Social dimensions of fertility behavior and consumption patterns in the Anthropocene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 6300-6307	11.5	17
264	An invitation for more research on transnational corporations and the biosphere. <i>Nature Ecology and Evolution</i> , 2020 , 4, 494	12.3	6
263	Stochastic dynamics of Cyanobacteria in long-term high-frequency observations of a eutrophic lake. <i>Limnology and Oceanography Letters</i> , 2020 , 5, 331-336	7.9	13
262	Climate change, ecosystems and abrupt change: science priorities. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2020 , 375, 20190105	5.8	82
261	Principles for knowledge co-production in sustainability research. <i>Nature Sustainability</i> , 2020 , 3, 182-19	022.1	317
260	Human impacts on planetary boundaries amplified by Earth system interactions. <i>Nature Sustainability</i> , 2020 , 3, 119-128	22.1	108
259	Navigating the chaos of an unfolding global cycle. <i>Ecology and Society</i> , 2020 , 25,	4.1	11

(2018-2020)

258	Corridors of Clarity: Four Principles to Overcome Uncertainty Paralysis in the Anthropocene. <i>BioScience</i> , 2020 , 70, 1139-1144	5.7	8
257	Dancing on the volcano: social exploration in times of discontent. <i>Ecology and Society</i> , 2019 , 24,	4.1	25
256	Variation in Bluegill Catch Rates and Total Length Distributions among Four Sampling Gears Used in Two Wisconsin Lakes Dominated by Small Fish. <i>North American Journal of Fisheries Management</i> , 2019 , 39, 714-724	1.1	3
255	Water clarity and temperature effects on walleye safe harvest: an empirical test of the safe operating space concept. <i>Ecosphere</i> , 2019 , 10, e02737	3.1	16
254	Opinion: Governing the recreational dimension of global fisheries. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 5209-5213	11.5	79
253	Role of economics in analyzing the environment and sustainable development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 5233-5238	11.5	72
252	Long-term studies and reproducibility: Lessons from whole-lake experiments. <i>Limnology and Oceanography</i> , 2019 , 64, S22	4.8	8
251	2020 Joint ASLO-SFS Meeting in Madison, Wisconsin. <i>Limnology and Oceanography Bulletin</i> , 2019 , 28, 112-112	0.9	
250	Comparing the effects of climate and land use on surface water quality using future watershed scenarios. <i>Science of the Total Environment</i> , 2019 , 693, 133484	10.2	12
249	Inferring critical transitions in paleoecological time series with irregular sampling and variable time-averaging. <i>Quaternary Science Reviews</i> , 2019 , 207, 49-63	3.9	8
248	Production dynamics reveal hidden overharvest of inland recreational fisheries. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 24676-24681	11.5	33
247	Anatomy and resilience of the global production ecosystem. <i>Nature</i> , 2019 , 575, 98-108	50.4	104
246	Transnational corporations and the challenge of biosphere stewardship. <i>Nature Ecology and Evolution</i> , 2019 , 3, 1396-1403	12.3	116
245	Understanding relationships among ecosystem services across spatial scales and over time. <i>Environmental Research Letters</i> , 2018 , 13, 054020	6.2	49
244	Extreme precipitation and phosphorus loads from two agricultural watersheds. <i>Limnology and Oceanography</i> , 2018 , 63, 1221-1233	4.8	49
243	Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape. <i>Ecological Applications</i> , 2018 , 28, 119-134	4.9	24
242	The synergistic effect of manure supply and extreme precipitation on surface water quality. <i>Environmental Research Letters</i> , 2018 , 13, 044016	6.2	21
241	Continuous separation of land use and climate effects on the past and future water balance. Journal of Hydrology, 2018 , 565, 106-122	6	21

240	Can we detect ecosystem critical transitions and signals of changing resilience from paleo-ecological records?. <i>Ecosphere</i> , 2018 , 9, e02438	3.1	14
239	Synthesis of a 33-yr series of whole-lake experiments: Effects of nutrients, grazers, and precipitation-driven water color on chlorophyll. <i>Limnology and Oceanography Letters</i> , 2018 , 3, 419-427	7.9	6
238	A modeling analysis of spatial statistical indicators of thresholds for algal blooms. <i>Limnology and Oceanography Letters</i> , 2018 , 3, 384-392	7.9	6
237	Abrupt Change in Ecological Systems: Inference and Diagnosis. <i>Trends in Ecology and Evolution</i> , 2018 , 33, 513-526	10.9	113
236	Early warning signals precede cyanobacterial blooms in multiple whole-lake experiments. <i>Ecological Monographs</i> , 2018 , 88, 188-203	9	34
235	Biodiversity and ecosystem services require IPBES to take novel approach to scenarios. <i>Sustainability Science</i> , 2017 , 12, 177-181	6.4	83
234	Response to the Letter, Nitrogen is Not a "House of Cards". <i>Environmental Science & Environmental Sci</i>	10.3	5
233	The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed. <i>Ecosystems</i> , 2017 , 20, 1468-1482	3.9	45
232	The consistency of a speciesO esponse to press perturbations with high food web uncertainty. <i>Ecology</i> , 2017 , 98, 1859-1868	4.6	5
231	The effects of experimental whole-lake mixing on horizontal spatial patterns of fish and Zooplankton. <i>Aquatic Sciences</i> , 2017 , 79, 543-556	2.5	5
230	Defining a Safe Operating Space for inland recreational fisheries. Fish and Fisheries, 2017, 18, 1150-116	0 6	55
229	Extreme events in lake ecosystem time series. <i>Limnology and Oceanography Letters</i> , 2017 , 2, 63-69	7.9	20
228	Reversal of a cyanobacterial bloom in response to early warnings. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 352-357	11.5	56
227	Spatial early warning signals in a lake manipulation. <i>Ecosphere</i> , 2017 , 8, e01941	3.1	25
226	Ecosystem Modeling for the 21st Century. <i>Ecosystems</i> , 2017 , 20, 211-214	3.9	6
225	Twenty Years of Ecosystems: Emerging Questions and Challenges. <i>Ecosystems</i> , 2017 , 20, 1-3	3.9	15
224	LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes. <i>GigaScience</i> , 2017 , 6, 1-22	7.6	75
223	From qualitative to quantitative environmental scenarios: Translating storylines into biophysical modeling inputs at the watershed scale. <i>Environmental Modelling and Software</i> , 2016 , 85, 80-97	5.2	33

(2015-2016)

222	Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proceedings of the National Academy of Sciences of the United States of America, 2016 , 113, 4081-5	11.5	238	
221	Local perspectives and global archetypes in scenario development. <i>Ecology and Society</i> , 2016 , 21,	4.1	15	
220	Response of plankton to nutrients, planktivory and terrestrial organic matter: a model analysis of whole-lake experiments. <i>Ecology Letters</i> , 2016 , 19, 230-9	10	26	
219	Bright spots: seeds of a good Anthropocene. Frontiers in Ecology and the Environment, 2016 , 14, 441-44	18 _{5.5}	296	
218	Social norms as solutions. <i>Science</i> , 2016 , 354, 42-43	33.3	314	
217	Reducing Phosphorus to Curb Lake Eutrophication is a Success. <i>Environmental Science & Emp; Technology</i> , 2016 , 50, 8923-9	10.3	464	
216	Extreme daily loads: role in annual phosphorus input to a north temperate lake. <i>Aquatic Sciences</i> , 2015 , 77, 71-79	2.5	48	
215	Advancing sustainability through mainstreaming a social@cological systems perspective. <i>Current Opinion in Environmental Sustainability</i> , 2015 , 14, 144-149	7.2	211	
214	Progress on Nonpoint Pollution: Barriers & Opportunities. <i>Daedalus</i> , 2015 , 144, 35-47	2	47	
213	Predicting walleye recruitment as a tool for prioritizing management actions. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2015 , 72, 661-672	2.4	48	
212	Climate and conservation. Creating a safe operating space for iconic ecosystems. <i>Science</i> , 2015 , 347, 1317-9	33.3	155	
211	With and without warning: managing ecosystems in a changing world. <i>Frontiers in Ecology and the Environment</i> , 2015 , 13, 460-467	5.5	48	
210	Generic Indicators of Ecological Resilience: Inferring the Chance of a Critical Transition. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2015 , 46, 145-167	13.5	221	
209	Allowing variance may enlarge the safe operating space for exploited ecosystems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 14384-9	11.5	82	
208	Resilience indicators: prospects and limitations for early warnings of regime shifts. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2015 , 370, 20130263	5.8	249	
207	Integrating Landscape Carbon Cycling: Research Needs for Resolving Organic Carbon Budgets of Lakes. <i>Ecosystems</i> , 2015 , 18, 363-375	3.9	62	
206	What is the influence of a reduction of planktivorous and benthivorous fish on water quality in temperate eutrophic lakes? A systematic review. <i>Environmental Evidence</i> , 2015 , 4,	3.3	45	
205	Altered energy flow in the food web of an experimentally darkened lake. <i>Ecosphere</i> , 2015 , 6, art33	3.1	19	

204	10 Years Later. Advances in Ecological Research, 2015 , 53, 1-53	4.6	28
203	Plausible futures of a social-ecological system: Yahara watershed, Wisconsin, USA. <i>Ecology and Society</i> , 2015 , 20,	4.1	56
202	Learning to Manage and Managing to Learn: Sustaining Freshwater Recreational Fisheries in a Changing Environment. <i>Fisheries</i> , 2015 , 40, 56-64	1.1	51
201	Sustainability. Planetary boundaries: guiding human development on a changing planet. <i>Science</i> , 2015 , 347, 1259855	33.3	4597
200	A Morphometric Approach for Stocking Walleye Fingerlings in Lakes Invaded by Rainbow Smelt. <i>North American Journal of Fisheries Management</i> , 2014 , 34, 998-1002	1.1	1
199	Use of deep autochthonous resources by zooplankton: Results of a metalimnetic addition of 13C to a small lake. <i>Limnology and Oceanography</i> , 2014 , 59, 986-996	4.8	12
198	Water quality implications from three decades of phosphorus loads and trophic dynamics in the Yahara chain of lakes. <i>Inland Waters</i> , 2014 , 4, 1-14	2.4	33
197	Early warning signals of ecological transitions: methods for spatial patterns. <i>PLoS ONE</i> , 2014 , 9, e92097	3.7	211
196	Regime shift in fertilizer commodities indicates more turbulence ahead for food security. <i>PLoS ONE</i> , 2014 , 9, e93998	3.7	40
195	Drought-driven lake level decline: effects on coarse woody habitat and fishes. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2014 , 71, 315-325	2.4	55
194	Early warnings of regime shifts: evaluation of spatial indicators from a whole-ecosystem experiment. <i>Ecosphere</i> , 2014 , 5, art102	3.1	29
193	A new approach for rapid detection of nearby thresholds in ecosystem time series. <i>Oikos</i> , 2014 , 123, 290-297	4	27
192	Phosphorus loading, transport and concentrations in a lake chain: a probabilistic model to compare management options. <i>Aquatic Sciences</i> , 2014 , 76, 145-154	2.5	19
191	What is the influence on water quality in temperate eutrophic lakes of a reduction of planktivorous and benthivorous fish? A systematic review protocol. <i>Environmental Evidence</i> , 2013 , 2, 9	3.3	11
190	Evidence of alternate attractors from a whole-ecosystem regime shift experiment. <i>Theoretical Ecology</i> , 2013 , 6, 385-394	1.6	25
189	Catch-and-Release Rates of Sport Fishes in Northern Wisconsin from an Angler Diary Survey. <i>North American Journal of Fisheries Management</i> , 2013 , 33, 606-614	1.1	44
188	Multiscale regime shifts and planetary boundaries. <i>Trends in Ecology and Evolution</i> , 2013 , 28, 389-95	10.9	194
187	Asymmetric response of early warning indicators of phytoplankton transition to and from cycles. <i>Theoretical Ecology</i> , 2013 , 6, 285-293	1.6	23

(2012-2013)

186	Are rapid transitions between invasive and native species caused by alternative stable states, and does it matter?. <i>Ecology</i> , 2013 , 94, 2207-19	4.6	32
185	Influences of local weather, large-scale climatic drivers, and the ca. 11 year solar cycle on lake ice breakup dates; 1905\(\textbf{0}004. \) Climatic Change, 2013 , 118, 857-870	4.5	23
184	Food web consequences of long-term invasive crayfish control. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2013 , 70, 1109-1122	2.4	53
183	Terrestrial support of pelagic consumers: patterns and variability revealed by a multilake study. <i>Freshwater Biology</i> , 2013 , 58, 2037-2049	3.1	58
182	Zooplankton provide early warnings of a regime shift in a whole lake manipulation. <i>Limnology and Oceanography</i> , 2013 , 58, 525-532	4.8	33
181	Changes in ecosystem resilience detected in automated measures of ecosystem metabolism during a whole-lake manipulation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 17398-403	11.5	48
180	The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries. <i>Environmental Research Letters</i> , 2013 , 8, 044048	6.2	36
179	Conditional Heteroskedasticity Forecasts Regime Shift in a Whole-Ecosystem Experiment. <i>Ecosystems</i> , 2012 , 15, 741-747	3.9	38
178	Anticipating critical transitions. <i>Science</i> , 2012 , 338, 344-8	33.3	1207
177	Program on ecosystem change and society: an international research strategy for integrated social@cological systems. <i>Current Opinion in Environmental Sustainability</i> , 2012 , 4, 134-138	7.2	74
176	Interpolating and forecasting lake characteristics using long-term monitoring data. <i>Limnology and Oceanography</i> , 2012 , 57, 1113-1125	4.8	5
175	Early warnings of regime shift when the ecosystem structure is unknown. <i>PLoS ONE</i> , 2012 , 7, e45586	3.7	34
174	Drivers, "Slow" Variables, "Fast" Variables, Shocks, and Resilience. <i>Ecology and Society</i> , 2012 , 17,	4.1	119
173	General Resilience to Cope with Extreme Events. Sustainability, 2012 , 4, 3248-3259	3.6	203
172	Assessing a decade of phosphorus management in the Lake Mendota, Wisconsin watershed and	2.5	20
	scenarios for enhanced phosphorus management. <i>Aquatic Sciences</i> , 2012 , 74, 241-253		
171	Whole-lake addition of coarse woody habitat: response of fish populations. <i>Aquatic Sciences</i> , 2012 , 74, 241-253	2.5	29
171 170	Whole-lake addition of coarse woody habitat: response of fish populations. <i>Aquatic Sciences</i> , 2012 ,	2.5	29 48

168	Resources supporting the food web of a naturally productive lake. <i>Limnology and Oceanography</i> , 2012 , 57, 1443-1452	4.8	25
167	Free-water lake metabolism: addressing noisy time series with a Kalman filter. <i>Limnology and Oceanography: Methods</i> , 2012 , 10, 20-30	2.6	25
166	Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. <i>PLoS ONE</i> , 2012 , 7, e41010	3.7	476
165	Solutions for a cultivated planet. <i>Nature</i> , 2011 , 478, 337-42	50.4	4351
164	State of the World® Freshwater Ecosystems: Physical, Chemical, and Biological Changes. <i>Annual Review of Environment and Resources</i> , 2011 , 36, 75-99	17.2	520
163	Decision-making under great uncertainty: environmental management in an era of global change. <i>Trends in Ecology and Evolution</i> , 2011 , 26, 398-404	10.9	359
162	Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. <i>Global Change Biology</i> , 2011 , 17, 1193-1211	11.4	129
161	Lakeshore residential development and growth of largemouth bass (Micropterus salmoides): a cross-lakes comparison. <i>Ecology of Freshwater Fish</i> , 2011 , 20, 92-101	2.1	26
160	Trophic downgrading of planet Earth. Science, 2011 , 333, 301-6	33.3	2365
159	Reconnecting to the biosphere. <i>Ambio</i> , 2011 , 40, 719-38	6.5	322
159 158	Reconnecting to the biosphere. <i>Ambio</i> , 2011 , 40, 719-38 Coarse Woody Habitat, Lakeshore Residential Development, and Largemouth Bass Nesting Behavior. <i>North American Journal of Fisheries Management</i> , 2011 , 31, 666-670	6.5 1.1	322 19
	Coarse Woody Habitat, Lakeshore Residential Development, and Largemouth Bass Nesting		
158	Coarse Woody Habitat, Lakeshore Residential Development, and Largemouth Bass Nesting Behavior. <i>North American Journal of Fisheries Management</i> , 2011 , 31, 666-670 Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. <i>Proceedings of the National Academy of Sciences of the United</i>	1.1	19
158 157	Coarse Woody Habitat, Lakeshore Residential Development, and Largemouth Bass Nesting Behavior. <i>North American Journal of Fisheries Management</i> , 2011 , 31, 666-670 Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 1975-80 Rates and components of carbon turnover in fish muscle: insights from bioenergetics models and a	1.1	19
158 157 156	Coarse Woody Habitat, Lakeshore Residential Development, and Largemouth Bass Nesting Behavior. <i>North American Journal of Fisheries Management</i> , 2011 , 31, 666-670 Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 1975-80 Rates and components of carbon turnover in fish muscle: insights from bioenergetics models and a whole-lake 13C addition. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2011 , 68, 387-399 Reconsideration of the planetary boundary for phosphorus. <i>Environmental Research Letters</i> , 2011 ,	1.1 11.5	19 244 106
158 157 156	Coarse Woody Habitat, Lakeshore Residential Development, and Largemouth Bass Nesting Behavior. <i>North American Journal of Fisheries Management</i> , 2011 , 31, 666-670 Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 1975-80 Rates and components of carbon turnover in fish muscle: insights from bioenergetics models and a whole-lake 13C addition. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2011 , 68, 387-399 Reconsideration of the planetary boundary for phosphorus. <i>Environmental Research Letters</i> , 2011 , 6, 014009 Conditional heteroscedasticity as a leading indicator of ecological regime shifts. <i>American</i>	1.1 11.5 2.4 6.2	19 244 106 230
158 157 156 155	Coarse Woody Habitat, Lakeshore Residential Development, and Largemouth Bass Nesting Behavior. North American Journal of Fisheries Management, 2011, 31, 666-670 Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1975-80 Rates and components of carbon turnover in fish muscle: insights from bioenergetics models and a whole-lake 13C addition. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68, 387-399 Reconsideration of the planetary boundary for phosphorus. Environmental Research Letters, 2011, 6, 014009 Conditional heteroscedasticity as a leading indicator of ecological regime shifts. American Naturalist, 2011, 178, 442-51	1.1 11.5 2.4 6.2	19 244 106 230

(2009-2010)

150	Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 19645-8	11.5	228
149	Interacting regime shifts in ecosystems: implication for early warnings. <i>Ecological Monographs</i> , 2010 , 80, 353-367	9	72
148	Filling holes in regional carbon budgets: Predicting peat depth in a north temperate lake district. Journal of Geophysical Research, 2010 , 115,		29
147	Ecosystem stewardship: sustainability strategies for a rapidly changing planet. <i>Trends in Ecology and Evolution</i> , 2010 , 25, 241-9	10.9	608
146	Early warnings of regime shifts in spatial dynamics using the discrete Fourier transform. <i>Ecosphere</i> , 2010 , 1, art10	3.1	42
145	Preparing for the future: teaching scenario planning at the graduate level. <i>Frontiers in Ecology and the Environment</i> , 2010 , 8, 267-273	5.5	29
144	Resilience Thinking: Integrating Resilience, Adaptability and Transformability. <i>Ecology and Society</i> , 2010 , 15,	4.1	1807
143	Ask[] 995: Commentary by Stephen Carpenter 2010 , 77-81		
142	AskI№002: Commentary by Stephen Carpenter 2010 , 217-220		
141	Resilience: Accounting for the Noncomputable. <i>Ecology and Society</i> , 2009 , 14,	4.1	65
141	Resilience: Accounting for the Noncomputable. <i>Ecology and Society</i> , 2009 , 14, Turning back from the brink: detecting an impending regime shift in time to avert it. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 826-31	4.1	65 485
	Turning back from the brink: detecting an impending regime shift in time to avert it. <i>Proceedings of</i>		2
140	Turning back from the brink: detecting an impending regime shift in time to avert it. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 826-31 Leading indicators of phytoplankton transitions caused by resource competition. <i>Theoretical</i>	11.5	485
140	Turning back from the brink: detecting an impending regime shift in time to avert it. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 826-31 Leading indicators of phytoplankton transitions caused by resource competition. <i>Theoretical Ecology</i> , 2009 , 2, 139-148	11.5	485
140 139 138	Turning back from the brink: detecting an impending regime shift in time to avert it. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 826-31 Leading indicators of phytoplankton transitions caused by resource competition. <i>Theoretical Ecology</i> , 2009 , 2, 139-148 Phosphorus sources and demand during summer in a eutrophic lake. <i>Aquatic Sciences</i> , 2009 , 71, 214-227	11.5 1.6 72.5	485
140 139 138	Turning back from the brink: detecting an impending regime shift in time to avert it. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 826-31 Leading indicators of phytoplankton transitions caused by resource competition. <i>Theoretical Ecology</i> , 2009 , 2, 139-148 Phosphorus sources and demand during summer in a eutrophic lake. <i>Aquatic Sciences</i> , 2009 , 71, 214-227 Early-warning signals for critical transitions. <i>Nature</i> , 2009 , 461, 53-9 Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment.	11.5 1.6 72.5	485 14 22 2460
140 139 138 137	Turning back from the brink: detecting an impending regime shift in time to avert it. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 826-31 Leading indicators of phytoplankton transitions caused by resource competition. <i>Theoretical Ecology</i> , 2009 , 2, 139-148 Phosphorus sources and demand during summer in a eutrophic lake. <i>Aquatic Sciences</i> , 2009 , 71, 214-227 Early-warning signals for critical transitions. <i>Nature</i> , 2009 , 461, 53-9 Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 1305-12 Climate change and lakes: Estimating sensitivities of water and carbon budgets. <i>Journal of</i>	11.5 1.6 72.5	485 14 22 2460 1437

132	Long-term variation in isotopic baselines and implications for estimating consumer trophic niches. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2008 , 65, 2191-2200	2.4	21
131	Phosphorus control is critical to mitigating eutrophication. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 11039-40	11.5	408
130	Zooplankton and the total phosphorus Ethlorophyll a relationship: hierarchical Bayesian analysis of measurement error. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2008 , 65, 2644-2655	2.4	20
129	Evaluation of metabolism models for free-water dissolved oxygen methods in lakes. <i>Limnology and Oceanography: Methods</i> , 2008 , 6, 454-465	2.6	79
128	G. EVELYN HUTCHINSON AWARD TO MICHAEL PACE. <i>Limnology and Oceanography Bulletin</i> , 2008 , 17, 111-111	0.9	
127	Leading indicators of trophic cascades. <i>Ecology Letters</i> , 2008 , 11, 128-38	10	120
126	Estimating the Risk of Exceeding Thresholds in Environmental Systems. <i>Water, Air, and Soil Pollution</i> , 2008 , 191, 131-138	2.6	5
125	Airborne carbon deposition on a remote forested lake. <i>Aquatic Sciences</i> , 2008 , 70, 213-224	2.5	23
124	Carbon sources supporting fish growth in a north temperate lake. <i>Aquatic Sciences</i> , 2008 , 70, 446-458	2.5	39
123	Probabilistic Estimate of a Threshold for Eutrophication. <i>Ecosystems</i> , 2008 , 11, 601-613	3.9	57
122	Complexity of coupled human and natural systems. <i>Science</i> , 2007 , 317, 1513-6	33.3	2210
121	Understanding Regional Change: A Comparison of Two Lake Districts. <i>BioScience</i> , 2007 , 57, 323-335	5.7	103
120	Carbon and water cycling in lake-rich landscapes: Landscape connections, lake hydrology, and biogeochemistry. <i>Journal of Geophysical Research</i> , 2007 , 112,		30
119	Small lakes dominate a random sample of regional lake characteristics. <i>Freshwater Biology</i> , 2007 , 52, 814-822	3.1	83
118	Support of benthic invertebrates by detrital resources and current autochthonous primary production: results from a whole-lake 13C addition. <i>Freshwater Biology</i> , 2007 , 53, 070902205948002-??	? ^{3.1}	12
117	Appropriate discounting leads to forward-looking ecosystem management. <i>Ecological Research</i> , 2007 , 22, 10-11	1.9	16
116	Sources and fates of dissolved organic carbon in lakes as determined by whole-lake carbon isotope additions. <i>Biogeochemistry</i> , 2007 , 84, 115-129	3.8	69
115	A Decade of Ecosystems. <i>Ecosystems</i> , 2007 , 10, 519-522	3.9	3

114	Coupled human and natural systems. Ambio, 2007, 36, 639-49	6.5	501
113	Does terrestrial organic carbon subsidize the planktonic food web in a clear-water lake?. <i>Limnology and Oceanography</i> , 2007 , 52, 2177-2189	4.8	109
112	Assessing pelagic and benthic metabolism using free water measurements. <i>Limnology and Oceanography: Methods</i> , 2007 , 5, 145-155	2.6	104
111	Panaceas and diversification of environmental policy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 15206-11	11.5	81
110	Stability and diversity of ecosystems. <i>Science</i> , 2007 , 317, 58-62	33.3	917
109	Can algal photosynthetic inorganic carbon isotope fractionation be predicted in lakes using existing models?. <i>Aquatic Sciences</i> , 2006 , 68, 142-153	2.5	67
108	LAKE DISSOLVED INORGANIC CARBON AND DISSOLVED OXYGEN: CHANGING DRIVERS FROM DAYS TO DECADES. <i>Ecological Monographs</i> , 2006 , 76, 343-363	9	54
107	Ecology. Millennium ecosystem assessment: research needs. <i>Science</i> , 2006 , 314, 257-8	33.3	368
106	Quick Fixes for the Environment: Part of the Solution or Part of the Problem?. <i>Environment</i> , 2006 , 48, 20-27	2.8	25
			/
105	Ecology for transformation. <i>Trends in Ecology and Evolution</i> , 2006 , 21, 309-15	10.9	165
105	Ecology for transformation. <i>Trends in Ecology and Evolution</i> , 2006 , 21, 309-15 Scenarios for Ecosystem Services: An Overview. <i>Ecology and Society</i> , 2006 , 11,	10.9	165 201
104	Scenarios for Ecosystem Services: An Overview. <i>Ecology and Society</i> , 2006 , 11, Variance as a Leading Indicator of Regime Shift in Ecosystem Services. <i>Ecology and Society</i> , 2006 ,	4.1	201
104	Scenarios for Ecosystem Services: An Overview. <i>Ecology and Society</i> , 2006 , 11, Variance as a Leading Indicator of Regime Shift in Ecosystem Services. <i>Ecology and Society</i> , 2006 , 11, Fish Community and Food Web Responses to a Whole-lake Removal of Coarse Woody Habitat.	4.1	201 75
104	Scenarios for Ecosystem Services: An Overview. <i>Ecology and Society</i> , 2006 , 11, Variance as a Leading Indicator of Regime Shift in Ecosystem Services. <i>Ecology and Society</i> , 2006 , 11, Fish Community and Food Web Responses to a Whole-lake Removal of Coarse Woody Habitat. <i>Fisheries</i> , 2006 , 31, 321-330	4.1	2017594
104	Scenarios for Ecosystem Services: An Overview. <i>Ecology and Society</i> , 2006 , 11, Variance as a Leading Indicator of Regime Shift in Ecosystem Services. <i>Ecology and Society</i> , 2006 , 11, Fish Community and Food Web Responses to a Whole-lake Removal of Coarse Woody Habitat. <i>Fisheries</i> , 2006 , 31, 321-330 Rising variance: a leading indicator of ecological transition. <i>Ecology Letters</i> , 2006 , 9, 311-8 Differential support of lake food webs by three types of terrestrial organic carbon. <i>Ecology Letters</i> ,	4.1 4.1 1.1	2017594548
104 103 102 101	Scenarios for Ecosystem Services: An Overview. <i>Ecology and Society</i> , 2006 , 11, Variance as a Leading Indicator of Regime Shift in Ecosystem Services. <i>Ecology and Society</i> , 2006 , 11, Fish Community and Food Web Responses to a Whole-lake Removal of Coarse Woody Habitat. <i>Fisheries</i> , 2006 , 31, 321-330 Rising variance: a leading indicator of ecological transition. <i>Ecology Letters</i> , 2006 , 9, 311-8 Differential support of lake food webs by three types of terrestrial organic carbon. <i>Ecology Letters</i> , 2006 , 9, 558-68	4.1 4.1 1.1 10	2017594548261

96	EUTROPHICATION DUE TO PHOSPHORUS RECYCLING IN RELATION TO LAKE MORPHOMETRY, TEMPERATURE, AND MACROPHYTES. <i>Ecology</i> , 2005 , 86, 210-219	4.6	119
95	Do dams and levees impact nitrogen cycling? Simulating the effects of flood alterations on floodplain denitrification. <i>Global Change Biology</i> , 2005 , 11, 1352-1367	11.4	45
94	Surrogates for Resilience of SocialEcological Systems. <i>Ecosystems</i> , 2005 , 8, 941-944	3.9	198
93	Soil Phosphorus Variability: Scale-dependence in an Urbanizing Agricultural Landscape. <i>Landscape Ecology</i> , 2005 , 20, 389-400	4.3	40
92	Uncertainty in Discount Models and Environmental Accounting. Ecology and Society, 2005, 10,	4.1	31
91	Eutrophication of aquatic ecosystems: bistability and soil phosphorus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 10002-5	11.5	531
90	A model of carbon evasion and sedimentation in temperate lakes. <i>Global Change Biology</i> , 2004 , 10, 128	5±112498	3 118
89	Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. <i>Nature</i> , 2004 , 427, 240	-350.4	439
88	Controls of 1 3C-DIC in lakes: Geochemistry, lake metabolism, and morphometry. <i>Limnology and Oceanography</i> , 2004 , 49, 1160-1172	4.8	112
87	Spatial Complexity, Resilience, and Policy Diversity: Fishing on Lake-rich Landscapes. <i>Ecology and Society</i> , 2004 , 9,	4.1	124
86	Evaluation of a Management System for a Mixed Walleye Spearing and Angling Fishery in Northern Wisconsin. <i>North American Journal of Fisheries Management</i> , 2003 , 23, 481-491	1.1	26
85	Lake metabolism: Relationships with dissolved organic carbon and phosphorus. <i>Limnology and Oceanography</i> , 2003 , 48, 1112-1119	4.8	254
84	The effects of an exotic fish invasion on the prey communities of two lakes. <i>Journal of Animal Ecology</i> , 2003 , 72, 331-342	4.7	63
83	Scenario Planning: a Tool for Conservation in an Uncertain World. Conservation Biology, 2003, 17, 358-3	6 6	893
82	Catastrophic regime shifts in ecosystems: linking theory to observation. <i>Trends in Ecology and Evolution</i> , 2003 , 18, 648-656	10.9	1798
81	VARIABILITY OF LAKES ON THE LANDSCAPE: ROLES OF PHOSPHORUS, FOOD WEBS, AND DISSOLVED ORGANIC CARBON. <i>Ecology</i> , 2003 , 84, 1563-1575	4.6	38
80	ESTIMATING COMMUNITY STABILITY AND ECOLOGICAL INTERACTIONS FROM TIME-SERIES DATA. <i>Ecological Monographs</i> , 2003 , 73, 301-330	9	354
79	Impacts of Daily Bag Limit Reductions on Angler Effort in Wisconsin Walleye Lakes. <i>North American Journal of Fisheries Management</i> , 2003 , 23, 1283-1293	1.1	96

(2000-2003)

78	UNCERTAINTY AND THE MANAGEMENT OF MULTISTATE ECOSYSTEMS: AN APPARENTLY RATIONAL ROUTE TO COLLAPSE. <i>Ecology</i> , 2003 , 84, 1403-1411	4.6	96
77	Comparisons of P-Yield, Riparian Buffer Strips, and Land Cover inSix Agricultural Watersheds. <i>Ecosystems</i> , 2002 , 5, 568-577	3.9	32
76	Stocking piscivores to improve fishing and water clarity: a synthesis of the Lake Mendota biomanipulation project. <i>Freshwater Biology</i> , 2002 , 47, 2410-2424	3.1	73
75	Pathways of organic carbon utilization in small lakes: Results from a whole-lake 13C addition and coupled model. <i>Limnology and Oceanography</i> , 2002 , 47, 1664-1675	4.8	173
74	Temporal, spatial, and taxonomic patterns of crustacean zooplankton variability in unmanipulated north-temperate lakes. <i>Limnology and Oceanography</i> , 2002 , 47, 613-625	4.8	37
73	ECOLOGICAL FUTURES: BUILDING AN ECOLOGY OF THE LONG NOW. <i>Ecology</i> , 2002 , 83, 2069-2083	4.6	155
72	Catastrophic shifts in ecosystems. <i>Nature</i> , 2001 , 413, 591-6	50.4	4673
71	Human Impact on Erodable Phosphorus and Eutrophication: A Global Perspective. <i>BioScience</i> , 2001 , 51, 227	5.7	610
70	WHOLE-LAKE FERTILIZATION EFFECTS ON DISTRIBUTION OF PRIMARY PRODUCTION BETWEEN BENTHIC AND PELAGIC HABITATS. <i>Ecology</i> , 2001 , 82, 1065-1077	4.6	186
69	WATER IN A CHANGING WORLD 2001 , 11, 1027-1045		563
69 68	WATER IN A CHANGING WORLD 2001 , 11, 1027-1045 Ecological forecasts: an emerging imperative. <i>Science</i> , 2001 , 293, 657-60	33-3	563 634
		33.3	
68	Ecological forecasts: an emerging imperative. <i>Science</i> , 2001 , 293, 657-60 TROPHIC CASCADES, NUTRIENTS, AND LAKE PRODUCTIVITY: WHOLE-LAKE EXPERIMENTS.		634
68 67	Ecological forecasts: an emerging imperative. <i>Science</i> , 2001 , 293, 657-60 TROPHIC CASCADES, NUTRIENTS, AND LAKE PRODUCTIVITY: WHOLE-LAKE EXPERIMENTS. <i>Ecological Monographs</i> , 2001 , 71, 163-186 Pelagic species size distributions in lakes: Are they discontinuous?. <i>Limnology and Oceanography</i> ,	9	634
68 67 66	Ecological forecasts: an emerging imperative. <i>Science</i> , 2001 , 293, 657-60 TROPHIC CASCADES, NUTRIENTS, AND LAKE PRODUCTIVITY: WHOLE-LAKE EXPERIMENTS. <i>Ecological Monographs</i> , 2001 , 71, 163-186 Pelagic species size distributions in lakes: Are they discontinuous?. <i>Limnology and Oceanography</i> , 2001 , 46, 1021-1033	9	634 348 71
68 67 66	Ecological forecasts: an emerging imperative. <i>Science</i> , 2001 , 293, 657-60 TROPHIC CASCADES, NUTRIENTS, AND LAKE PRODUCTIVITY: WHOLE-LAKE EXPERIMENTS. <i>Ecological Monographs</i> , 2001 , 71, 163-186 Pelagic species size distributions in lakes: Are they discontinuous?. <i>Limnology and Oceanography</i> , 2001 , 46, 1021-1033 WATER IN A CHANGING WORLD 2001 , 11, 1027 TROPHIC CASCADES, NUTRIENTS, AND LAKE PRODUCTIVITY: WHOLE-LAKE EXPERIMENTS 2001 ,	9	634 348 71 2
68 67 66 65 64	Ecological forecasts: an emerging imperative. <i>Science</i> , 2001 , 293, 657-60 TROPHIC CASCADES, NUTRIENTS, AND LAKE PRODUCTIVITY: WHOLE-LAKE EXPERIMENTS. <i>Ecological Monographs</i> , 2001 , 71, 163-186 Pelagic species size distributions in lakes: Are they discontinuous?. <i>Limnology and Oceanography</i> , 2001 , 46, 1021-1033 WATER IN A CHANGING WORLD 2001 , 11, 1027 TROPHIC CASCADES, NUTRIENTS, AND LAKE PRODUCTIVITY: WHOLE-LAKE EXPERIMENTS 2001 , 71, 163	9 4.8	634 348 71 2

60	Hares and Tortoises: Interactions of Fast and Slow Variablesin Ecosystems. <i>Ecosystems</i> , 2000 , 3, 495-49	73.9	103
59	Phosphorus Flow in a Watershed-Lake Ecosystem. <i>Ecosystems</i> , 2000 , 3, 561-573	3.9	39
58	Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography, 2000 , 45, 1718-1730	4.8	290
57	Predicted impact of zebra mussel (Dreissena polymorpha) invasion on water clarity in Lake Mendota. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2000 , 57, 1617-1626	2.4	26
56	Food web structure and nutrient enrichment: effects on sediment phosphorus retention in whole-lake experiments. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2000 , 57, 1524-1533	2.4	15
55	SYNCHRONOUS BEHAVIOR OF TEMPERATURE, CALCIUM, AND CHLOROPHYLL IN LAKES OF NORTHERN WISCONSIN. <i>Ecology</i> , 2000 , 81, 815-825	4.6	84
54	Of salmon and dams. <i>Science</i> , 2000 , 290, 933-4	33.3	3
53	SYNCHRONOUS BEHAVIOR OF TEMPERATURE, CALCIUM, AND CHLOROPHYLL IN LAKES OF NORTHERN WISCONSIN 2000 , 81, 815		1
52	Summer water clarity responses to phosphorus, Daphnia grazing, and internal mixing in Lake Mendota. <i>Limnology and Oceanography</i> , 1999 , 44, 137-146	4.8	45
51	COMMUNITY INTERACTION WEBS AND ZOOPLANKTON RESPONSES TO PLANKTIVORY MANIPULATIONS. <i>Ecology</i> , 1999 , 80, 1405-1421	4.6	70
50	Lake restoration: capabilities and needs. <i>Hydrobiologia</i> , 1999 , 395/396, 19-28	2.4	26
49	A Mixed-Order Model to Assess Contaminant Declines. <i>Environmental Monitoring and Assessment</i> , 1999 , 55, 435-444	3.1	10
48	A Phosphorus Budget for the Lake Mendota Watershed. <i>Ecosystems</i> , 1999 , 2, 69-75	3.9	84
47	Introduction to Special Feature. <i>Ecosystems</i> , 1999 , 2, 383-383	3.9	7
46	MANAGEMENT OF EUTROPHICATION FOR LAKES SUBJECT TO POTENTIALLY IRREVERSIBLE CHANGE 1999 , 9, 751-771		552
45	Trophic cascades revealed in diverse ecosystems. <i>Trends in Ecology and Evolution</i> , 1999 , 14, 483-488	10.9	1029
44	ECONOMIC VALUATION OF FRESHWATER ECOSYSTEM SERVICES IN THE UNITED STATES: 1971f1997 1999 , 9, 772-783		56
43	MICROCOSM EXPERIMENTS HAVE LIMITED RELEVANCE FOR COMMUNITY AND ECOSYSTEM ECOLOGY: REPLY. <i>Ecology</i> , 1999 , 80, 1085-1088	4.6	44

Predicting responses of chlorophyll and primary production to changes in phosphorus, grazing, and dissolved organic carbon (Reply to comment by Ninberg). Limnology and Oceanography, **1999**, 44, 1179-1182 42 Ecological and economic analysis of lake eutrophication by nonpoint pollution. Austral Ecology, 41 1.5 53 **1998**, 23, 68-79 Evaluating Alternative Explanations in Ecosystem Experiments. Ecosystems, 1998, 1, 335-344 40 3.9 35 TROPHIC CASCADES AND COMPENSATION: DIFFERENTIAL RESPONSES OF MICROZOOPLANKTON 4.6 60 39 IN WHOLE-LAKE EXPERIMENTS. Ecology, 1998, 79, 138-152 Phosphorus loading reductions needed to control blue-green algal blooms in Lake Mendota. 38 107 2.4 Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 1169-1178 Workshop on Ecosystem Manipulation. Ecosystems, 1998, 1, 321-322 37 3.9 36 NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN 1998, 8, 559-568 3425 Responses of epilimnetic phytoplankton to experimental nutrient enrichment in three small 35 2.2 39 seepage lakes. Journal of Plankton Research, 1998, 20, 1889-1914 LONG-TERM ENVIRONMENTAL MONITORING: SOME PERSPECTIVES FROM LAKES 1998, 8, 269-276 28 34 POPULATION, COMMUNITY, AND ECOSYSTEM VARIATES AS ECOLOGICAL INDICATORS: 103 33 PHYTOPLANKTON RESPONSES TO WHOLE-LAKE ENRICHMENT 1998, 8, 508-530 Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and 32 4.8 231 production in experimental lakes. Limnology and Oceanography, 1998, 43, 73-80 NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN 1998, 8, 559 6 The Need for Large-Scale Experiments to Assess and Predict the Response of Ecosystems to 30 70 Perturbation 1998, 287-312 Seasonal effects of variable recruitment of a dominant piscivore on pelagic food web structure. 4.8 36 29 Limnology and Oceanography, 1997, 42, 722-729 A Bayesian observation error model to predict cyanobacterial biovolume from spring total phosphorus in Lake Mendota, Wisconsin. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 28 2.4 21 54, 464-473 Water clarity in Lake Mendota since 1900: responses to differing levels of nutrients and herbivory. 27 50 2.4 Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53, 2250-2261 Chlorophyll Variability, Nutrient Input, and Grazing: Evidence from Whole- Lake Experiments. 26 4.6 98 Ecology, 1996, 77, 725-735 Pelagic responses to changes in dissolved organic carbon following division of a seepage lake. 4.8 25 37 Limnology and Oceanography, 1996, 41, 553-559

24	Phosphorus Loads to Surface Waters: A Simple Model to Account for Spatial Pattern of Land Use 1996 , 6, 865-878		179
23	Responses of Bluegill to Habitat Manipulations: Power to Detect Effects. <i>North American Journal of Fisheries Management</i> , 1995 , 15, 519-527	1.1	16
22	Biological Control of Eutrophication in Lakes. <i>Environmental Science & Environmental </i>	86 0.3	103
21	Marine Conservation: Global Marine Biological Diversity . A Strategy for Building Conservation into Decision Making. Elliott A. Norse, Ed. Island Press, Washington, DC, 1993. xxxii, 383 pp., illus. \$50; paper, \$27.50 <i>Science</i> , 1994 , 266, 468-468	33.3	
20	Food Web Structure and Phosphorus Cycling in Lakes. <i>Transactions of the American Fisheries Society</i> , 1993 , 122, 756-772	1.7	150
19	Comparison of Dynamic Models for Edible Phytoplankton. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1993 , 50, 1757-1767	2.4	16
18	Food Web Structure and Long-Term Phosphorus Recycling: A Simulation Model Evaluation. <i>Transactions of the American Fisheries Society</i> , 1993 , 122, 773-783	1.7	18
17	The Rise and Fall of a Dominant Planktivore: Direct and Indirect Effects on Zooplankton. <i>Ecology</i> , 1993 , 74, 303-319	4.6	78
16	Fish predators, food availability and diel vertical migration in Daphnia. <i>Journal of Plankton Research</i> , 1992 , 14, 359-377	2.2	58
15	Biotic feedbacks in Lake phosphorus cycles. <i>Trends in Ecology and Evolution</i> , 1992 , 7, 332-6	10.9	99
14	Phytoplankton and Their Relationship to Nutrients 1992 , 97-126		10
13	he effect of whole-lake fish community manipulations on Daphnia migratory behavior. <i>Limnology and Oceanography</i> , 1991 , 36, 370-377	4.8	18
12	Patterns of Primary Production and Herbivory in 25 North American Lake Ecosystems 1991 , 67-96		21
11	Large-Scale Perturbations: Opportunities for Innovation. <i>Ecology</i> , 1990 , 71, 2038-2043	4.6	123
10	Whole-lake experiments: The annual record of fossil pigments and zooplankton. <i>Limnology and Oceanography</i> , 1989 , 34, 700-717	4.8	152
9	Consumer Control of Lake Productivity. <i>BioScience</i> , 1988 , 38, 764-769	5.7	332
8	Zooplankton-mediated transitions between N- and P-limited algal growth1. <i>Limnology and Oceanography</i> , 1988 , 33, 1-14	4.8	209
7	Transmission of Variance through Lake Food Webs 1988 , 119-135		26

LIST OF PUBLICATIONS

6	Regulation of Lake Primary Productivity by Food Web Structure. <i>Ecology</i> , 1987 , 68, 1863-1876	4.6	577
5	Limnetic Herbivory: Effects on Phytoplankton Populations and Primary Production. <i>Ecology</i> , 1986 , 67, 1351-1360	4.6	84
4	Paul and Peter Lakes: A Liming Experiment Revisited. <i>American Midland Naturalist</i> , 1986 , 116, 282	0.7	16
3	Cascading Trophic Interactions and Lake Productivity. <i>BioScience</i> , 1985 , 35, 634-639	5.7	1877
2	Cascading Trophic Interactions and Lake Productivity. <i>BioScience</i> , 1985 , 35, 634-639 Resilience of phytoplankton dynamics to trophic cascades and nutrient enrichment. <i>Limnology and Oceanography</i> ,	5·7 4.8	1877