Honghao Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1484148/publications.pdf

Version: 2024-02-01

567281 580821 46 736 15 25 citations h-index g-index papers 46 46 46 757 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Electromagnetic wave absorption mechanism of Fe@C nanoparticles prepared by gaseous detonation. Materials Chemistry and Physics, 2021, 259, 124037.	4.0	11
2	One-step rapid fabrication of high-purity onion-like carbons as efficient lubrication additives. Journal of Materials Science, 2021, 56, 1286-1297.	3.7	10
3	Structural engineering design of carbon dots for lubrication. Chinese Chemical Letters, 2021, 32, 2693-2714.	9.0	30
4	Dynamic Response and Parametric Studies of Elliptical Blast-Resistant Door with the Combined Structure for Large Vacuum Explosion Containers. Shock and Vibration, 2021, 2021, 1-14.	0.6	0
5	One-pot millisecond preparation of carbon-coated SiO2 nanoparticles. Diamond and Related Materials, 2020, 101, 107645.	3.9	3
6	Study on the factors of large-scale space wave absorption of MWCNTs/Fe3O4 nanocomposite particles. Journal of Materials Science: Materials in Electronics, 2020, 31, 22727-22739.	2.2	6
7	Study on absorbing wave of Fe3O4/MWCNTs nanoparticles based on large-scale space. Journal of Materials Science: Materials in Electronics, 2020, 31, 2666-2675.	2.2	6
8	Electromagnetic wave absorption properties of multi-walled carbon nanotubes-anatase composites in 1–18— GHz frequency. Ceramics International, 2019, 45, 22759-22764.	4.8	4
9	Fabrication and wave absorption property of Co C material prepared by direct detonation of gaseous hydrocarbon fuels. Diamond and Related Materials, 2019, 99, 107525.	3.9	3
10	Absorbance analysis of Fe3O4 particles of different scales in silicone rubber at Ku band. Results in Physics, 2019, 15, 102541.	4.1	6
11	Ultrafast preparation of polymer carbon dots with solid-state fluorescence for white light-emitting diodes. Materials Research Express, 2019, 6, 065609.	1.6	4
12	Electromagnetic wave absorption and scattering analysis for Fe3O4 with different scales particles. Chemical Physics Letters, 2019, 723, 51-56.	2.6	17
13	<i>In situ</i> fabrication of carbon dots-based lubricants using a facile ultrasonic approach. Green Chemistry, 2019, 21, 2279-2285.	9.0	70
14	Study on microwave attenuation mechanism model of Fe ₃ O ₄ /MWCNTs nanocomposites. Materials Research Express, 2019, 6, 125617.	1.6	5
15	Preparation and microwave absorption properties of MWCNTs/Fe3O4/NBR composites. Diamond and Related Materials, 2019, 100, 107573.	3.9	15
16	Numerical study of the postcombustion effects on the underwater explosion of an aluminized explosive by a novel nonisentropic model for the detonation products. Journal of Energetic Materials, 2019, 37, 174-187.	2.0	5
17	One-pot millisecond preparation of quench-resistant solid-state fluorescence carbon dots toward an efficient lubrication additive. Diamond and Related Materials, 2019, 91, 255-260.	3.9	10
18	Gaseous detonation synthesis of Co@C nanoparticles/CNTs materials. Materials Letters, 2019, 236, 179-182.	2.6	13

#	Article	IF	Citations
19	Growth mechanism and wave-absorption properties of multiwalled carbon nanotubes fabricated using a gaseous detonation method. Materials Research Bulletin, 2018, 102, 153-159.	5.2	21
20	The effects of hydrogen proportion on the synthesis of carbon nanomaterials with gaseous detonation (deflagration) method. Materials Research Express, 2018, 5, 025024.	1.6	2
21	Study of continuous velocity probe method for the determination of the detonation pressure of commercial explosives. Journal of Energetic Materials, 2018, 36, 377-385.	2.0	9
22	Underwater explosive compaction-sintering of tungsten–copper coating on a copper surface. High Pressure Research, 2018, 38, 41-52.	1.2	2
23	A simple electrometric method for parametric determination of Jones-Wilkins-Lee equation of state from underwater explosion test. Journal of Applied Physics, 2018, 124, 215906.	2.5	7
24	Simulation of the wave-absorbing model of a carbonyl ironÂ/Âsilver-coated core–shell structure. Pramana - Journal of Physics, 2018, 91, 1.	1.8	3
25	Graphene quantum dots prepared by gaseous detonation toward excellent friction-reducing and antiwear additives. Diamond and Related Materials, 2018, 89, 293-300.	3.9	22
26	Study on wave absorption properties of carbonyl iron and SiO2 coated carbonyl iron particles. AIP Advances, 2018, 8 , .	1.3	17
27	Metal catalyzed preparation of carbon nanomaterials by hydrogen–oxygen detonation method. Combustion and Flame, 2018, 196, 108-115.	5.2	13
28	A solvent-free gaseous detonation approach for converting benzoic acid into graphene quantum dots within milliseconds. Diamond and Related Materials, 2018, 87, 233-241.	3.9	9
29	The Influence of Ar on the Synthesis of Carbon-coated Copper Nanoparticles in Gaseous Detonation. Current Nanoscience, 2018, 14, 360-365.	1.2	4
30	Characterization and photocatalytic properties of SiO 2 –TiO 2 nanocomposites prepared through gaseous detonation method. Ceramics International, 2017, 43, 9377-9381.	4.8	16
31	Characterization and photocatalytic properties of nano-Fe2O3–TiO2 composites prepared through the gaseous detonation method. Ceramics International, 2017, 43, 14334-14339.	4.8	33
32	Characterization of carbon-encapsulated permalloy nanoparticles prepared through detonation. Materials Research Express, 2017, 4, 075024.	1.6	10
33	Phase transition rate of anatase during detonation synthesis of TiO ₂ . Phase Transitions, 2017, 90, 618-627.	1.3	1
34	Characterization and photocatalytic properties of SnO 2 –TiO 2 nanocomposites prepared through gaseous detonation method. Ceramics International, 2017, 43, 1517-1521.	4.8	28
35	A velocity probe-based method for continuous detonation and shock measurement in near-field underwater explosion. Review of Scientific Instruments, 2017, 88, 123905.	1.3	5
36	Experimental Study of Bilinear Initiating System Based on Hard Rock Pile Blasting. Shock and Vibration, 2017, 2017, 1-9.	0.6	1

#	Article	IF	CITATION
37	Optimal Design and Preparation of Nano-TiO2 Photocatalyst Using Gaseous Detonation Method. Journal of Nanoscience and Nanotechnology, 2017, 17, 2124-2129.	0.9	2
38	Synthesis of nano-diamond/alumina composite by detonation method. Diamond and Related Materials, 2017, 77, 79-83.	3.9	16
39	Slurry explosive detonation synthesis and characterization of 10 nm TiO 2. Ceramics International, 2016, 42, 14862-14866.	4.8	7
40	Detonation Synthesis and Friction-Wear Test of Carbon-Encapsulated Copper Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 1569-1575.	3.7	8
41	Effect of Initial Hardness on Interfacial Features in Underwater Explosive Welding of Tool Steel SKS3. Journal of Materials Engineering and Performance, 2014, 23, 421-428.	2.5	29
42	An Alternative Thin-Plate Welding Technology Using Underwater Shock Wave. Journal of Adhesion Science and Technology, 2012, 26, 1733-1743.	2.6	13
43	Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method. Carbon, 2010, 48, 3858-3863.	10.3	85
44	Preparation and characterization of nanosized TiO2 powders by gaseous detonation method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 153, 21-24.	3.5	6
45	Preparation and characterization of the TiO2 ultrafine particles by detonation method. Materials Research Bulletin, 2008, 43, 97-103.	5. 2	20
46	Preparation and characterization of graphite nanosheets from detonation technique. Materials Letters, 2008, 62, 703-706.	2.6	129