
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1483998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Connecting TNF-α Signaling Pathways to iNOS Expression in a Mouse Model of Alzheimer's Disease: Relevance for the Behavioral and Synaptic Deficits Induced by Amyloid β Protein. Journal of Neuroscience, 2007, 27, 5394-5404.	3.6	265
2	Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase. Free Radical Biology and Medicine, 2009, 47, 449-457.	2.9	214
3	Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicology and Applied Pharmacology, 2008, 227, 147-154.	2.8	191
4	Oxidative stress in digestive gland and gill of the brown mussel (Perna perna) exposed to air and re-submersed. Journal of Experimental Marine Biology and Ecology, 2005, 318, 21-30.	1.5	147
5	Mercurial-Induced Hydrogen Peroxide Generation in Mouse Brain Mitochondria: Protective Effects of Quercetin. Chemical Research in Toxicology, 2007, 20, 1919-1926.	3.3	117
6	Cerebellar thiol status and motor deficit after lactational exposure to methylmercury. Environmental Research, 2006, 102, 22-28.	7.5	91
7	Twenty years of the â€~Preparation for Oxidative Stress' (POS) theory: Ecophysiological advantages and molecular strategies. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 234, 36-49.	1.8	88
8	Antioxidant status and stress proteins in the gills of the brown mussel Perna perna exposed to zinc. Chemico-Biological Interactions, 2006, 160, 232-240.	4.0	87
9	Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress. Aquatic Toxicology, 2014, 153, 27-38.	4.0	84
10	Growth, biochemical and physiological responses of Salminus brasiliensis with different stocking densities and handling. Aquaculture, 2010, 301, 22-30.	3.5	83
11	Comparative hematology in marine fish. Comparative Biochemistry and Physiology A, Comparative Physiology, 1992, 102, 311-321.	0.6	81
12	Protective effects of Polygala paniculata extract against methylmercury-induced neurotoxicity in miceâ€. Journal of Pharmacy and Pharmacology, 2010, 57, 1503-1508.	2.4	81
13	Differential susceptibility following β-amyloid peptide-(1–40) administration in C57BL/6 and Swiss albino mice: Evidence for a dissociation between cognitive deficits and the glutathione system response. Behavioural Brain Research, 2007, 177, 205-213.	2.2	79
14	Perspectives on Molecular Biomarkers of Oxidative Stress and Antioxidant Strategies in Traumatic Brain Injury. BioMed Research International, 2014, 2014, 1-18.	1.9	74
15	Zinc Attenuates Malathion-Induced Depressant-like Behavior and Confers Neuroprotection in the Rat Brain. Toxicological Sciences, 2007, 97, 140-148.	3.1	73
16	A light in the darkness: New biotransformation genes, antioxidant parameters and tissue-specific responses in oysters exposed to phenanthrene. Aquatic Toxicology, 2014, 152, 324-334.	4.0	71
17	Antioxidant defenses and lipid peroxidation in the cerebral cortex and hippocampus following acute exposure to malathion and/or zinc chloride. Toxicology, 2005, 207, 283-291.	4.2	69
18	Protein S-Thiolation and Regulation of Microsomal Glutathione Transferase Activity by the Glutathione Redox Couple. Archives of Biochemistry and Biophysics, 1996, 332, 288-294.	3.0	65

#	Article	IF	CITATIONS
19	Antioxidant enzymes and thiol/disulfide status in the digestive gland of the brown mussel Perna perna exposed to lead and paraquat. Chemico-Biological Interactions, 2004, 149, 97-105.	4.0	65
20	Structure–activity relationship of flavonoids derived from medicinal plants in preventing methylmercury-induced mitochondrial dysfunction. Environmental Toxicology and Pharmacology, 2010, 30, 272-278.	4.0	63
21	Effects of 2,3-dimercapto-1-propanesulfonic acid (DMPS) on methylmercury-induced locomotor deficits and cerebellar toxicity in mice. Toxicology, 2007, 239, 195-203.	4.2	61
22	The role of vitamin C in stress-related disorders. Journal of Nutritional Biochemistry, 2020, 85, 108459.	4.2	60
23	α-Tocopherol administration produces an antidepressant-like effect in predictive animal models of depression. Behavioural Brain Research, 2010, 209, 249-259.	2.2	56
24	Fluoxetine modulates hippocampal cell signaling pathways implicated in neuroplasticity in olfactory bulbectomized mice. Behavioural Brain Research, 2013, 237, 176-184.	2.2	56
25	Antioxidant defenses, longevity and ecophysiology of South American bats. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2007, 146, 214-220.	2.6	55
26	Antinociceptive Properties of the Hydroalcoholic Extract and the Flavonoid Rutin Obtained from <i>Polygala paniculata </i> L. in Mice. Basic and Clinical Pharmacology and Toxicology, 2009, 104, 306-315.	2.5	55
27	Selenium in water enhances antioxidant defenses and protects against copper-induced DNA damage in the blue mussel Mytilus edulis. Aquatic Toxicology, 2011, 101, 64-71.	4.0	55
28	Hypoxia effects on oxidative stress and immunocompetence biomarkers in the mussel Perna perna (Mytilidae, Bivalvia). Marine Environmental Research, 2017, 126, 109-115.	2.5	54
29	Cellular and Transcriptional Responses of Crassostrea gigas Hemocytes Exposed in Vitro to Brevetoxin (PbTx-2). Marine Drugs, 2012, 10, 583-597.	4.6	53
30	Involvement of glutathione, ERK1/2 phosphorylation and BDNF expression in the antidepressant-like effect of zinc in rats. Behavioural Brain Research, 2008, 188, 316-323.	2.2	50
31	Zinc causes acute impairment of glutathione metabolism followed by coordinated antioxidant defenses amplification in gills of brown mussels Perna perna. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 159, 22-30.	2.6	49
32	A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism. Free Radical Biology and Medicine, 2011, 51, 69-77.	2.9	48
33	Pramipexole, a Dopamine D2/D3 Receptor-Preferring Agonist, Prevents Experimental Autoimmune Encephalomyelitis Development in Mice. Molecular Neurobiology, 2017, 54, 1033-1045.	4.0	48
34	Zinc reverses malathion-induced impairment in antioxidant defenses. Toxicology Letters, 2009, 187, 137-143.	0.8	44
35	Antioxidant effect of diphenyl diselenide against sodium nitroprusside (SNP) induced lipid peroxidation in human platelets and erythrocyte membranes: An in vitro evaluation. Chemico-Biological Interactions, 2006, 164, 126-135.	4.0	43
36	Protective effects of diphenyl diselenide in a mouse model of brain toxicity. Chemico-Biological Interactions, 2013, 206, 18-26.	4.0	42

#	Article	IF	CITATIONS
37	Cipura paludosa Extract Prevents Methyl Mercury-Induced Neurotoxicity in Mice. Basic and Clinical Pharmacology and Toxicology, 2007, 101, 127-131.	2.5	41
38	Diphenyl diselenide protects neuronal cells against oxidative stress and mitochondrial dysfunction: Involvement of the glutathione-dependent antioxidant system. Redox Biology, 2019, 20, 118-129.	9.0	41
39	Antioxidant and Acetylcholinesterase Response to Repeated Malathion Exposure in Rat Cerebral Cortex and Hippocampus. Basic and Clinical Pharmacology and Toxicology, 2008, 102, 365-369.	2.5	40
40	Folic acid administration prevents ouabainâ€induced hyperlocomotion and alterations in oxidative stress markers in the rat brain. Bipolar Disorders, 2010, 12, 414-424.	1.9	40
41	Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2007, 146, 22-53.	2.6	39
42	Lactational exposure to inorganic mercury: Evidence of neurotoxic effects. Neurotoxicology and Teratology, 2007, 29, 360-367.	2.4	38
43	Diphenyl diselenide confers neuroprotection against hydrogen peroxide toxicity in hippocampal slices. Brain Research, 2008, 1199, 138-147.	2.2	38
44	Antinociceptive Effect of the <i>Polygala sabulosa</i> Hydroalcoholic Extract in Mice: Evidence for the Involvement of Glutamatergic Receptors and Cytokine Pathways. Basic and Clinical Pharmacology and Toxicology, 2008, 103, 43-47.	2.5	37
45	RA Differentiation Enhances Dopaminergic Features, Changes Redox Parameters, and Increases Dopamine Transporter Dependency in 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells. Neurotoxicity Research, 2017, 31, 545-559.	2.7	37
46	Cellular prion protein modulates age-related behavioral and neurochemical alterations in mice. Neuroscience, 2009, 164, 896-907.	2.3	36
47	Antidepressant-like effect of pramipexole in an inflammatory model of depression. Behavioural Brain Research, 2017, 320, 365-373.	2.2	36
48	Methylglyoxal, the foe and friend of glyoxalase and Trx/TrxR systems in HT22 nerve cells. Free Radical Biology and Medicine, 2015, 89, 8-19.	2.9	34
49	Copper at low levels impairs memory of adult zebrafish (Danio rerio) and affects swimming performance of larvae. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2016, 185-186, 122-130.	2.6	34
50	Protein S-thiolation and redox regulation of membrane-bound glutathione transferase. Chemico-Biological Interactions, 1998, 111-112, 177-185.	4.0	32
51	Gills as a glutathione-dependent metabolic barrier in Pacific oysters Crassostrea gigas : Absorption, metabolism and excretion of a model electrophile. Aquatic Toxicology, 2016, 173, 105-119.	4.0	32
52	Methylglyoxal-induced AMPK activation leads to autophagic degradation of thioredoxin 1 and glyoxalase 2 in HT22 nerve cells. Free Radical Biology and Medicine, 2017, 108, 270-279.	2.9	31
53	Vitamin E for the management of major depressive disorder: possible role of the anti-inflammatory and antioxidant systems. Nutritional Neuroscience, 2022, 25, 1310-1324.	3.1	31
54	17β-estradiol decreases methylmercury-induced neurotoxicity in male mice. Environmental Toxicology and Pharmacology, 2009, 27, 293-297.	4.0	30

#	Article	IF	CITATIONS
55	Synergistic neurotoxicity induced by methylmercury and quercetin in mice. Food and Chemical Toxicology, 2009, 47, 645-649.	3.6	28
56	Repeated Methylglyoxal Treatment Depletes Dopamine in the Prefrontal Cortex, and Causes Memory Impairment and Depressive-Like Behavior in Mice. Neurochemical Research, 2020, 45, 354-370.	3.3	28
57	Antidepressant-like responses in the forced swimming test elicited by glutathione and redox modulation. Behavioural Brain Research, 2013, 253, 165-172.	2.2	27
58	Evaluation of glutathione metabolism in NMDA preconditioning against quinolinic acid-induced seizures in mice cerebral cortex and hippocampus. Brain Research, 2007, 1184, 38-45.	2.2	26
59	The exercise redox paradigm in the Down's syndrome: improvements in motor function and increases in blood oxidative status in young adults. Journal of Neural Transmission, 2008, 115, 1643-1650.	2.8	26
60	Antidepressant-like action of the bark ethanolic extract from Tabebuia avellanedae in the olfactory bulbectomized mice. Journal of Ethnopharmacology, 2013, 145, 737-745.	4.1	26
61	Antioxidant responses and lipid peroxidation following intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats: increased susceptibility of olfactory bulb. Life Sciences, 2007, 80, 1906-1914.	4.3	25
62	Temporal effects of newly developed oximes (K027, K048) on malathion-induced acetylcholinesterase inhibition and lipid peroxidation in mouse prefrontal cortex. NeuroToxicology, 2008, 29, 184-189.	3.0	25
63	Oxygen–glucose deprivation decreases glutathione levels and glutamate uptake in rat hippocampal slices. Brain Research, 2006, 1083, 211-218.	2.2	24
64	Antioxidant deficit in gills of Pacific oyster (Crassostrea gigas) exposed to chlorodinitrobenzene increases menadione toxicity. Aquatic Toxicology, 2012, 108, 85-93.	4.0	24
65	The biological importance of glutathione peroxidase and peroxiredoxin backup systems in bivalves during peroxide exposure. Marine Environmental Research, 2014, 101, 81-90.	2.5	23
66	Oxidative Stress Causes Intracellular Reversible S-Thiolation of Chicken Hemoglobin under Diamide and Xanthine Oxidase Treatment. Archives of Biochemistry and Biophysics, 1998, 358, 291-296.	3.0	22
67	A temporal analysis of the relationships between social stress, humoral immune response and glutathione-related antioxidant defenses. Behavioural Brain Research, 2008, 192, 226-231.	2.2	22
68	Expression of Tyrosine Hydroxylase Increases the Resistance of Human Neuroblastoma Cells to Oxidative Insults. Toxicological Sciences, 2010, 113, 150-157.	3.1	21
69	Effects of K074 and pralidoxime on antioxidant and acetylcholinesterase response in malathion-poisoned mice. NeuroToxicology, 2011, 32, 888-895.	3.0	20
70	How important are glutathione and thiol reductases to oyster hemocyte function?. Fish and Shellfish Immunology, 2015, 46, 566-572.	3.6	20
71	Upregulating Nrf2-dependent antioxidant defenses in Pacific oysters Crassostrea gigas: Investigating the Nrf2/Keap1 pathway in bivalves. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2017, 195, 16-26.	2.6	20
72	Biochemical alterations in juvenile carp (Cyprinus carpio) exposed to zinc: Glutathione reductase as a target. Marine Environmental Research, 2008, 66, 88-89.	2.5	19

#	Article	IF	CITATIONS
73	Methylglyoxal-Mediated Dopamine Depletion, Working Memory Deficit, and Depression-Like Behavior Are Prevented by a Dopamine/Noradrenaline Reuptake Inhibitor. Molecular Neurobiology, 2021, 58, 735-749.	4.0	19
74	Diphenyl ditelluride targets brain selenoproteins in vivo: inhibition of cerebral thioredoxin reductase and glutathione peroxidase in mice after acute exposure. Molecular and Cellular Biochemistry, 2012, 370, 173-182.	3.1	18
75	Effects of High-Intensity Swimming on Lung Inflammation and Oxidative Stress in a Murine Model of DEP-Induced Injury. PLoS ONE, 2015, 10, e0137273.	2.5	18
76	Protective effects of organoselenium compounds against methylmercury-induced oxidative stress in mouse brain mitochondrial-enriched fractions. Brazilian Journal of Medical and Biological Research, 2011, 44, 1156-1163.	1.5	15
77	Root effect hemoglobins in marine fish. Comparative Biochemistry and Physiology A, Comparative Physiology, 1989, 92, 467-471.	0.6	14
78	Alterations in glutathione levels of brain structures caused by acute restraint stress and by nitric oxide synthase inhibition but not by intraspecific agonistic interaction. Behavioural Brain Research, 2006, 166, 71-77.	2.2	14
79	Acute exposure of rabbits to diphenyl diselenide: a toxicological evaluation. Journal of Applied Toxicology, 2010, 30, 761-768.	2.8	14
80	Biochemical alterations in caged Nile tilapia Oreochromis niloticus. Ecotoxicology and Environmental Safety, 2010, 73, 864-872.	6.0	14
81	Glutathione in Chlorpyrifos-and Chlorpyrifos-Oxon-Induced Toxicity: a Comparative Study Focused on Non-cholinergic Toxicity in HT22 Cells. Neurotoxicity Research, 2020, 38, 603-610.	2.7	14
82	Asymmetric Hemoglobins, Their Thiol Content, and Blood Glutathione of the Scalloped Hammerhead Shark, Sphyrna lewini. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 116, 323-331.	1.6	13
83	Perturbations in the thiol homeostasis following neonatal cerebral hypoxia-ischemia in rats. Neuroscience Letters, 2003, 345, 65-68.	2.1	13
84	Protective effect of crude extract from Wedelia paludosa (Asteraceae) on the hepatotoxicity induced by paracetamol in mice. Journal of Pharmacy and Pharmacology, 2010, 58, 137-142.	2.4	13
85	Gender Effects of Acute Malathion or Zinc Exposure on the Antioxidant Response of Rat Hippocampus and Cerebral Cortex. Basic and Clinical Pharmacology and Toxicology, 2010, 107, 965-970.	2.5	13
86	Biochemical responses in mussels Perna perna exposed to diesel B5. Chemosphere, 2015, 134, 210-216.	8.2	13
87	Methylglyoxal-Induced Protection Response and Toxicity: Role of Glutathione Reductase and Thioredoxin Systems. Neurotoxicity Research, 2017, 32, 340-350.	2.7	13
88	High-Intensity Exercise Prevents Disturbances in Lung Inflammatory Cytokines and Antioxidant Defenses Induced by Lipopolysaccharide. Inflammation, 2018, 41, 2060-2067.	3.8	13
89	Interaction of Curcumin with Manganese May Compromise Metal and Neurotransmitter Homeostasis in the Hippocampus of Young Mice. Biological Trace Element Research, 2014, 158, 399-409.	3.5	12
90	CYP-dependent induction of glutathione S-transferase in Daphnia similis exposed to a disperse azo dye. Ecotoxicology, 2015, 24, 232-237.	2.4	12

#	Article	IF	CITATIONS
91	Effects of Swimming on the Inflammatory and Redox Response in a Model of Allergic Asthma. International Journal of Sports Medicine, 2015, 36, 579-584.	1.7	12
92	Two epizootic <i>Perkinsus </i> spp. events in commercial oyster farms at Santa Catarina, Brazil. Journal of Fish Diseases, 2019, 42, 455-463.	1.9	12
93	High hemoglobin mixed disulfide content in hemolysates from stressed shark. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1990, 96, 215-219.	0.2	10
94	Intranasal administration of sodium dimethyldithiocarbamate induces motor deficits and dopaminergic dysfunction in mice. NeuroToxicology, 2018, 66, 107-120.	3.0	10
95	Luteinizing Hormone and Testosterone Levels during Acute Phase of Severe Traumatic Brain Injury: Prognostic Implications for Adult Male Patients. Frontiers in Endocrinology, 2018, 9, 29.	3.5	10
96	Effects of ascorbic acid on anxiety state and affect in a non-clinical sample. Acta Neurobiologiae Experimentalis, 2017, 77, 362-372.	0.7	10
97	REDOX MODULATION AT THE PERIPHERAL SITE ALTERS NOCICEPTIVE TRANSMISSION <i>IN VIVO</i> . Clinical and Experimental Pharmacology and Physiology, 2009, 36, 272-277.	1.9	9
98	Inhibition of reductase systems by 2-AAPA modulates peroxiredoxin oxidation and mitochondrial function in A172 glioblastoma cells. Toxicology in Vitro, 2017, 42, 273-280.	2.4	9
99	Contrasting effects of a classic Nrf2 activator, tert-butylhydroquinone, on the glutathione-related antioxidant defenses in Pacific oysters, Crassostrea gigas. Marine Environmental Research, 2017, 130, 142-149.	2.5	9
100	Thiol oxidation of hemolymph proteins in oysters <i>Crassostrea brasiliana</i> as markers of oxidative damage induced by urban sewage exposure. Environmental Toxicology and Chemistry, 2017, 36, 1833-1845.	4.3	9
101	First evidence of viral and bacterial oyster pathogens in the Brazilian coast. Journal of Fish Diseases, 2018, 41, 559-563.	1.9	8
102	Peroxiredoxin expression and redox status in neutrophils and HL-60â€ [−] cells. Free Radical Biology and Medicine, 2019, 135, 227-234.	2.9	8
103	Vulnerability of glutathione-depleted Crassostrea gigas oysters to Vibrio species. Marine Environmental Research, 2020, 154, 104870.	2.5	8
104	Lipopolysaccharide-InducedÂStriatal Nitrosative Stress and Impaired Social Recognition Memory Are Not Magnified by Paraquat Coexposure. Neurochemical Research, 2018, 43, 745-759.	3.3	7
105	Involvement of vertebrate hemoglobin in antioxidant protection: chicken blood as a model. Canadian Journal of Zoology, 2007, 85, 404-412.	1.0	6
106	Biochemical changes in Salminus brasiliensis due to successive captures and stocking densities. Acta Scientiarum - Biological Sciences, 2013, 35, .	0.3	6
107	Transcriptional effects in the estuarine guppy Poecilia vivipara exposed to sanitary sewage in laboratory and in situ. Ecotoxicology and Environmental Safety, 2019, 182, 109411.	6.0	6
108	Hyperosmotic Stress Initiates AMPK-Independent Autophagy and AMPK- and Autophagy-Independent Depletion of Thioredoxin 1 and Glyoxalase 2 in HT22 Nerve Cells. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-10.	4.0	6

#	Article	IF	CITATIONS
109	Protective effects against memory impairment induced by methylglyoxal in mice co-treated with FPS-ZM1, an advanced glycation end products receptor antagonist. Acta Neurobiologiae Experimentalis, 2020, 80, 364-374.	0.7	6
110	Effects of ascorbic acid on anxiety state and affect in a non-clinical sample. Acta Neurobiologiae Experimentalis, 2017, 77, 362-372.	0.7	6
111	Glutathione mixed disulfides and heterogeneity of chicken hemoglobins. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1992, 102, 849-853.	0.2	5
112	<i>In vitro</i> Reactivating Effects of Standard and Newly Developed Oximes on Malaoxonâ€Inhibited Mouse Brain Acetylcholinesterase. Basic and Clinical Pharmacology and Toxicology, 2010, 107, 768-773.	2.5	5
113	Glutathione and iron at the crossroad of redox metabolism in rats infected by Trypanosoma evansi. Parasitology Research, 2013, 112, 2361-2366.	1.6	5
114	Involvement of serotonergic neurotransmission in the antidepressant-like effect elicited by cholecalciferol in the chronic unpredictable stress model in mice. Metabolic Brain Disease, 2022, 37, 1597-1608.	2.9	5
115	Hemoglobin S-thiolation during peroxide-induced oxidative stress in chicken blood. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2006, 142, 188-197.	2.6	4
116	Sub-acute administration of (S)-dimethyl 2-(3-(phenyltellanyl) propanamido) succinate induces toxicity and oxidative stress in mice: unexpected effects of N-acetylcysteine. SpringerPlus, 2013, 2, 182.	1.2	4
117	Confinement during field studies may jeopardize antioxidant and physiological responses of Nile tilapia to contaminants. Marine Environmental Research, 2013, 91, 97-103.	2.5	4
118	<i>N</i> -acetylcysteine does not protect behavioral and biochemical toxicological effect after acute exposure of diphenyl ditelluride. Toxicology Mechanisms and Methods, 2014, 24, 529-535.	2.7	4
119	Modulation of Brain Glutathione Reductase and Peroxiredoxin 2 by α-Tocopheryl Phosphate. Cellular and Molecular Neurobiology, 2016, 36, 1015-1022.	3.3	4
120	Phaseolin ingestion affects vesicular traffic causing oxidative stress in the midgut of Callosobruchus maculatus larvae. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2019, 228, 34-40.	1.6	4
121	Rapid and persistent loss of TXNIP in HT22 neuronal cells under carbonyl and hyperosmotic stress. Neurochemistry International, 2020, 132, 104585.	3.8	4
122	Multiple cellular targets involved in the antidepressant-like effect of glutathione. Chemico-Biological Interactions, 2020, 328, 109195.	4.0	4
123	Fructose Intake Impairs Cortical Antioxidant Defenses Allied to Hyperlocomotion in Middle-Aged C57BL/6 Female Mice. Neurochemical Research, 2020, 45, 2868-2883.	3.3	4
124	Growth and stress of dourado cultivated in cages at different stocking densities. Pesquisa Agropecuaria Brasileira, 2013, 48, 1145-1149.	0.9	3
125	The potential of bacterial cultures to degrade the mutagen 2-methyl-1,4-dinitro-pyrrole in a processed meat model. Food Research International, 2020, 136, 109441.	6.2	3
126	Oxidative damage in Nile tilapia, Oreochromis niloticus, is mainly induced by water temperature variation rather than Aurantiochytrium sp. meal dietary supplementation. Fish Physiology and Biochemistry, 2022, 48, 85-99.	2.3	3

#	Article	IF	CITATIONS
127	Acetaldehyde does not inhibit glutathione peroxidase and glutathione reductase from mouse liver in vitro. Chemico-Biological Interactions, 2006, 159, 196-204.	4.0	2
128	Neuroprotective effects of melatonin against neurotoxicity induced by intranasal sodium dimethyldithiocarbamate administration in mice. NeuroToxicology, 2020, 80, 144-154.	3.0	2
129	Aerobic exercise ameliorates survival, clinical score, lung inflammation, DNA and protein damage in septic mice. Cytokine, 2021, 140, 155401.	3.2	2
130	Pulmonary and muscle profile in pneumosepsis: A temporal analysis of inflammatory markers. Cytokine, 2019, 114, 128-134.	3.2	1
131	The effect of voluntary wheel running on the antioxidant status is dependent on sociability conditions. Pharmacology Biochemistry and Behavior, 2020, 198, 173018.	2.9	1
132	Dietary supplementation with increasing doses of an organic micromineral complex on juvenile Nile tilapia: Effects on the antioxidant defense system and tissue deposition. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 260, 111039.	1.8	1
133	Aerobic Exercise Attenuates Kidney Injury, Improves Physical Performance, and Increases Antioxidant Defenses in Lungs of Adenine-Induced Chronic Kidney Disease Mice. Inflammation, 2022, 45, 1895-1910.	3.8	1