
Anna Makarova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1483994/publications.pdf Version: 2024-02-01

ANNA MAKADOVA

#	Article	IF	CITATIONS
1	Induced Phytoextraction of Mercury. Separation and Purification Reviews, 2022, 51, 174-194.	5.5	6
2	Comparison of the performance of different methods to stabilize mercury-containing waste. Journal of Material Cycles and Waste Management, 2022, 24, 1134-1139.	3.0	5
3	Element content in human hair of residents from Simferopol city. Ekologiya Cheloveka (Human) Tj ETQq1 1 0.784	1314 rgBT 0.7	Qverlock 10
4	The methodology of using information technology and visualisations to optimize and improve management in the effectiveness of a student's work in the laboratory. E3S Web of Conferences, 2021, 225, 07001.	0.5	2
5	Screening of various chemical additives, including S-containing complexion to enhance phytoextraction of mercury by white creeping clover (Trifolium repens L.). IOP Conference Series: Earth and Environmental Science, 2021, 663, 012041.	0.3	3
6	The Improved Phytoextraction of Heavy Metals and the Growth of Trifolium repens L.: The Role of K2HEDP and Plant Growth Regulators Alone and in Combination. Sustainability, 2021, 13, 2432.	3.2	4
7	Potential of S-containing and P-containing complexones in improving phytoextraction of mercury by Trifolium repens L Saudi Journal of Biological Sciences, 2021, 28, 3037-3048.	3.8	6
8	MODELING THE SYSTEM OF ACCOUNTING FOR STUDENT LEARNING OUTCOMES IN THE FORMATION OF AN INDIVIDUAL PATH OF MULTILEVEL ENGINEERING AND TECHNOLOGICAL EDUCATION. , 2021, , .		0
9	Comprehensive Analysis of Mercury Content in Environmental Subsystems of the Crimean Peninsula. Theoretical Foundations of Chemical Engineering, 2021, 55, 638-647.	0.7	0
10	Analyzing the Efficiency of Using Different Chemical Compositions for Intensifying the Phytoextraction Processes of Mercury and Other Heavy Metals Based on Multivariate Image Tools. Theoretical Foundations of Chemical Engineering, 2021, 55, 1185-1191.	0.7	1
11	Research on green technologies for immobilizing mercury in waste to minimize chemical footprint. Pure and Applied Chemistry, 2020, 92, 557-565.	1.9	1
12	Green Chemistry and Chemophobia. Herald of the Russian Academy of Sciences, 2020, 90, 245-250.	0.6	4
13	Systems Analysis of the Efficiency of Imitation Processes of the Chemical Immobilization of Mercury in Waste Using Multivariant Visualization Tools. Theoretical Foundations of Chemical Engineering, 2020, 54, 872-878.	0.7	3
14	Elemental composition of human hair in different territories of the Crimean peninsula. E3S Web of Conferences, 2019, 98, 02001.	0.5	3
15	Environmental performance assessment of the chemical industries involved in the Responsible Care®Program: Case study of the Russian Federation. Journal of Cleaner Production, 2019, 222, 971-985.	9.3	13
16	Assessment of Patterns of the Lower Atmosphere Ozone Concentrations and Meteorological Factors as the Risk Factors for Medical Emergencies in the Population. Russian Journal of Physical Chemistry B, 2019, 13, 1011-1019.	1.3	2
17	Structural and functional features of the rosaceae determining passive immunity to fungal infections. IOP Conference Series: Earth and Environmental Science, 2019, 390, 012021.	0.3	0
18	COMPARATIVE ANALYSIS OF THE EMOTIONAL STATE OF STUDENTS FROM DIFFERENT FACULTIES AT THE SAME UNIVERSITY. Gigiena I Sanitariia, 2019, 96, 1216-1225.	0.5	1

Anna Makarova

#	Article	IF	CITATIONS
19	DEVELOPMENT OF TECHNOLOGY FOR THE IMMOBILIZATION OF THE MERCURY IN THE WASTE FOR THE REDUCING OF THE LOAD ON THE ENVIRONMENT , 2019, , .		0
20	ASSESSMENT OF PRESURFACE OZONE CONCENTRATION AS A FUNCTION A SOME METEOROLOGICAL FACTORS. , 2019, , .		0
21	Estimating chemical footprint: contamination with mercury and its compounds. Pure and Applied Chemistry, 2018, 90, 857-868.	1.9	12
22	Green chemistry and sustainable development: approaches to chemical footprint analysis. Pure and Applied Chemistry, 2018, 90, 143-155.	1.9	12
23	Evaluation of the Phosphorus Load on Freshwater Bodies of Subjects of the Russian Federation: Modeling of the Migration of Phosphorus and Its Compounds among Environmental Components. Doklady Earth Sciences, 2018, 480, 818-822.	0.7	2
24	Estimating Chemical Footprint on High-resolution Geospatial Grid. Procedia CIRP, 2018, 69, 469-474.	1.9	7
25	Global anthropogenic chemicals loads on the environment and the associated chemical footprint and planetary boundaries: a high-resolution regional study. Pure and Applied Chemistry, 2018, 90, 1735-1742.	1.9	0
26	BUCCAL MICRONUCLEUS CYTOME ASSAY IN THE SYSTEM OF THE HYGIENIC EVALUATION OF LEARNING CONDITIONS OF STUDENTS OF DIFFERENT FACULTIES OF THE SAME UNIVERSITY. Gigiena I Sanitariia, 2018, 97, 179-187.	0.5	5
27	ESTIMATING MERCURY FOOTPRINT IN THE REGIONS OF THE RUSSIAN FEDERATION. , 2018, , .		1
28	Estimation of the phosphorus loading with consideration for the planetary boundaries (for the) Tj ETQq0 0 0 rgB	[/Oyerlock 1.9	2 10 Tf 50 38
29	Algorithm of multi-criterion green process assessment for renewable raw materials bioconversion. Journal of Cleaner Production, 2017, 162, 380-390.	9.3	5
30	Green chemistry for the optimum technology of biological conversion of vegetable waste. Sustainable Production and Consumption, 2017, 10, 66-73.	11.0	3
31	MODELLING OF MIDDLE ATMOSPHERE GLOBAL RESPONSE TO ANTHROPOGENIC CLIMATE CHANGE: IMPACT ON GENERAL CIRCULATION AND AIR COMPOSITION IN MESOSPHERE AND LOWER IONOSPHERE. , 2017, , .		0
32	RESOURCES OF THE UNDERGROUND WATERS OF RUSSIA, THEIR USE AND QUALITY. , 2017, , .		0
33	SAICM Science Sector and IUPAC Activities. Chemistry International, 2016, 38, .	0.3	0
34	Assessment of the chemical pollution in the context of the planetary boundaries. Russian Chemical Bulletin, 2016, 65, 1383-1394.	1.5	6
35	Phosphorus within planetary boundaries. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1447-1451.	1.6	1
36	Systemic approach to the development of green chemistry. Pure and Applied Chemistry, 2016, 88, 37-42.	1.9	3

Anna Makarova

#	Article	IF	CITATIONS
37	Control of the Degree of Visualization Effects of Industrial Facilities on the Environment. Ecology and Industry of Russia, 2016, 20, 44-49.	0.4	4
38	Green chemistry as a tool for reduction of environmental risks from exposure to chemically hazardous facilities. Russian Journal of Physical Chemistry B, 2015, 9, 406-411.	1.3	4
39	The development of Green Chemistry in Russia as a tool to improve the competitiveness of chemical products [an opinion poll]. Journal of Cleaner Production, 2014, 83, 491-496.	9.3	9
40	Comparative analysis of chemicals management systems. Russian Chemical Bulletin, 2013, 62, 1682-1697.	1.5	0
41	Green chemistry and Russian industry. Herald of the Russian Academy of Sciences, 2013, 83, 499-505.	0.6	6
42	Laboratory information management systems in the work of the analytic laboratory. Measurement Techniques, 2011, 53, 1182-1189.	0.6	41
43	Development of Method for Discontinuing Mercury-Containing Waste Including the Method of Analysis of Residual Concentrations. KnE Materials Science, 0, , .	0.1	0