Joseph S Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1483969/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Denitrification and Nitrogen Burial in Swiss Lakes. Environmental Science & Technology, 2022, 56, 2794-2802.	10.0	5
2	Validation of Bioavailabilityâ€Based Toxicity Models for Metals. Environmental Toxicology and Chemistry, 2020, 39, 101-117.	4.3	31
3	Toxicity of Nanoparticulate Nickel to Aquatic Organisms: Review and Recommendations for Improvement of Toxicity Tests. Environmental Toxicology and Chemistry, 2020, 39, 1861-1883.	4.3	9
4	Nitrogen fertilization of soils fuels carbonate weathering and translocation in calcareous watersheds. Aquatic Sciences, 2020, 82, 1.	1.5	0
5	Effects of copper on olfactory, behavioral, and other sublethal responses of saltwater organisms: Are estimated chronic limits using the biotic ligand model protective?. Environmental Toxicology and Chemistry, 2018, 37, 1515-1522.	4.3	3
6	Is the Factor-of-2 Rule Broadly Applicable for Evaluating the Prediction Accuracy of Metal-Toxicity Models?. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 64-68.	2.7	11
7	Protectiveness of Cu water quality criteria against impairment of behavior and chemo/mechanosensory responses: An update. Environmental Toxicology and Chemistry, 2018, 37, 1260-1279.	4.3	10
8	Effect of age on acute toxicity of cadmium, copper, nickel, and zinc in individualâ€metal exposures to <i>Daphnia magna</i> neonates. Environmental Toxicology and Chemistry, 2017, 36, 113-119.	4.3	28
9	Ageâ€related differences in sensitivity to metals can matter for <i>Daphnia magna</i> neonates. Integrated Environmental Assessment and Management, 2017, 13, 208-210.	2.9	2
10	Acute Toxicity of Ternary Cd–Cu–Ni and Cd–Ni–Zn Mixtures to <i>Daphnia magna</i> : Dominant Metal Pairs Change along a Concentration Gradient. Environmental Science & Technology, 2017, 51, 4471-4481.	10.0	23
11	Misapplication of generic hazard-classification schemes for versatile, sustainable building materials: Copper as an example. Human and Ecological Risk Assessment (HERA), 2017, 23, 1703-1730.	3.4	2
12	A test of the additivity of acute toxicity of binaryâ€metal mixtures of ni with Cd, Cu, and Zn to <i>Daphnia magna</i> , using the inflection point of the concentration–response curves. Environmental Toxicology and Chemistry, 2016, 35, 1843-1851.	4.3	22
13	Alkalinity regulation in calcium carbonate-buffered lakes. Limnology and Oceanography, 2016, 61, 341-352.	3.1	49
14	The Use of Field and Mesocosm Experiments to Quantify Effects of Physical and Chemical Stressors in Mining-Contaminated Streams. Environmental Science & Technology, 2016, 50, 7825-7833.	10.0	33
15	Critical Review: Toxicity of Dietborne Metals to Aquatic Organisms. Critical Reviews in Environmental Science and Technology, 2015, 45, 1176-1241.	12.8	62
16	Acute toxicity of binary and ternary mixtures of Cd, Cu, and Zn to <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2015, 34, 799-808.	4.3	89
17	Metal Mixtures Modeling Evaluation project: 1. Background. Environmental Toxicology and Chemistry, 2015, 34, 726-740.	4.3	71
18	Development of a regression model to predict copper toxicity to <i>Daphnia magna</i> and siteâ€specific copper criteria across multiple surfaceâ€water drainages in an arid landscape. Environmental Toxicology and Chemistry, 2014, 33, 1865-1873.	4.3	10

JOSEPH S MEYER

#	Article	IF	CITATIONS
19	Water chemistry matters in metalâ€ŧoxicity papers. Environmental Toxicology and Chemistry, 2012, 31, 689-690.	4.3	14
20	Relationship between biotic ligand modelâ€based water quality criteria and avoidance and olfactory responses to copper by fish. Environmental Toxicology and Chemistry, 2010, 29, 2096-2103.	4.3	34
21	DISSOLVED FRACTION OF STANDARD LABORATORY CLADOCERAN FOOD ALTERS TOXICITY OF WATERBORNE SILVER TO CERIODAPHNIA DUBIA. Environmental Toxicology and Chemistry, 2008, 27, 1426.	4.3	8
22	Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas). Aquatic Toxicology, 2007, 84, 268-278.	4.0	17
23	Photosynthetically Mediated Zn Removal from the Water Column in High Ore Creek, Montana. Water, Air, and Soil Pollution, 2007, 179, 391-395.	2.4	7
24	Photooxidation of wetland and riverine dissolved organic matter: altered copper complexation and organic composition. Hydrobiologia, 2007, 579, 95-113.	2.0	61
25	Light-mediated Zn uptake in photosynthetic biofilm. Hydrobiologia, 2006, 571, 361-371.	2.0	19
26	Leachability of Protein and Metals Incorporated into Aquatic Invertebrates: Are Species and Metals-Exposure History Important?. Archives of Environmental Contamination and Toxicology, 2006, 50, 79-87.	4.1	1
27	Does Biofilm Contribute to Diel Cycling of Zn in High Ore Creek, Montana?. Biogeochemistry, 2005, 76, 233-259.	3.5	29
28	Subchronic Toxicity of Low Dissolved Oxygen Concentrations, Elevated pH, and Elevated Ammonia Concentrations to Lost River Suckers. Transactions of the American Fisheries Society, 2002, 131, 656-666.	1.4	16
29	Whole-body accumulation of copper predicts acute toxicity to an aquatic oligochaete (Lumbriculus) Tj ETQq1 1 C Toxicology and Pharmacology, 2002, 133, 99-109.).784314 2.6	rgBT /Overlo 12
30	The utility of the terms "bioavailability―and "bioavailable fraction―for metals. Marine Environmental Research, 2002, 53, 417-423.	2.5	58
31	Naturalized salmonid populations occur in the presence of elevated trace element concentrations and temperatures in the firehole river, Yellowstone National Park, Wyoming, USA. Environmental Toxicology and Chemistry, 2001, 20, 2342-2352.	4.3	8
32	Biotic ligand model of the acute toxicity of metals. 1. Technical Basis. Environmental Toxicology and Chemistry, 2001, 20, 2383-2396.	4.3	1,100
33	Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and <i>Daphnia</i> . Environmental Toxicology and Chemistry, 2001, 20, 2397-2402.	4.3	457
34	Influence of Stream Flow on Hydrogen Sulfide Concentrations and Distributions of Two Trout Species in a Rocky Mountains Tailwater. North American Journal of Fisheries Management, 2001, 21, 971-975.	1.0	5
35	NATURALIZED SALMONID POPULATIONS OCCUR IN THE PRESENCE OF ELEVATED TRACE ELEMENT CONCENTRATIONS AND TEMPERATURES IN THE FIREHOLE RIVER, YELLOWSTONE NATIONAL PARK, WYOMING, USA. Environmental Toxicology and Chemistry, 2001, 20, 2342.	4.3	2
36	Nitrogen removal in a surface-flow wastewater treatment wetland. Wetlands, 1999, 19, 403-412.	1.5	5

JOSEPH S MEYER

#	Article	IF	CITATIONS
37	A Mechanistic Explanation for the In(LC50) vs In(Hardness) Adjustment Equation for Metals. Environmental Science & Technology, 1999, 33, 908-912.	10.0	43
38	Binding of Nickel and Copper to Fish Gills Predicts Toxicity When Water Hardness Varies, But Free-Ion Activity Does Not. Environmental Science & Technology, 1999, 33, 913-916.	10.0	182
39	Copper tolerance in ironâ€reducing bacteria: Implications for copper mobilization in sediments. Environmental Toxicology and Chemistry, 1998, 17, 675-678.	4.3	12
40	Relationships between boron concentrations and trout in the firehole river, wyoming. Biological Trace Element Research, 1998, 66, 167-184.	3.5	7
41	Modeling toxicity due to intermittent exposure of rainbow trout and common shiners to monochloramine. Environmental Toxicology and Chemistry, 1995, 14, 165-175.	4.3	31
42	Sensitivity analysis of population growth rates estimated from cladoceran chronic toxicity tests. Environmental Toxicology and Chemistry, 1987, 6, 115-126.	4.3	46
43	SENSITIVITY ANALYSIS OF POPULATION GROWTH RATES ESTIMATED FROM CLADOCERAN CHRONIC TOXICITY TESTS. Environmental Toxicology and Chemistry, 1987, 6, 115.	4.3	4
44	Exhaustive steam distillation extraction of aromatic organics from rainbow trout and water. Environmental Toxicology and Chemistry, 1986, 5, 155-159.	4.3	7
45	Anthracene bioconcentration in rainbow trout during singleâ€compound and complexâ€mixture exposures. Environmental Toxicology and Chemistry, 1985, 4, 549-558.	4.3	9
46	Chemistry and aquatic toxicity of raw oil shale leachates from piceance basin, Colorado. Environmental Toxicology and Chemistry, 1985, 4, 559-572.	4.3	16