
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1483862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of cooling rate during porcelain firing on the optical properties of 3 mol% yttria-stabilized zirconia. Korean Journal of Dental Materials, 2021, 48, 269-280.	0.1	0
2	Spectral characteristics of caries autofluorescence obtained from different locations and caries severities. Journal of Biophotonics, 2020, 13, e201900224.	2.3	1
3	Coating Medpor® Implant with Tissue-Engineered Elastic Cartilage. Journal of Functional Biomaterials, 2020, 11, 34.	4.4	5
4	Effect of cooling rate on hardness and microstructure of Pd–Ag–In–Snâ^'Ga alloy during porcelain firing simulation. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 107, 103728.	3.1	5
5	Temperature changes and compressive properties of bulk-fill composites by light curing. Korean Journal of Dental Materials, 2020, 47, 193-202.	0.1	0
6	The effect of cooling rate on hardness and microstructure of a metal-ceramic Au-Pt-Pd alloy during simulated firing. Korean Journal of Dental Materials, 2020, 47, 181-192.	0.1	0
7	Effect of ice-quenching after oxidation on the change in hardness and microstructure during porcelain firing in a metal-ceramic Au-Pd-Ag-In alloy. Korean Journal of Dental Materials, 2020, 47, 37-50.	0.1	0
8	Fluorinated Bioactive Glass Nanoparticles: Enamel Demineralization Prevention and Antibacterial Effect of Orthodontic Bonding Resin. Materials, 2019, 12, 1813.	2.9	33
9	Enamel Surface Remineralization Effect by Fluorinated Graphite and Bioactive Glass-Containing Orthodontic Bonding Resin. Materials, 2019, 12, 1308.	2.9	18
10	Effect of ice quenching after oxidation with or without vacuum on the hardness of Pd–Ag–Au–In alloy during porcelain firing simulation. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 94, 93-109.	3.1	7
11	Effect of different sizes of bioactive glass-coated mesoporous silica nanoparticles on dentinal tubule occlusion and mineralization. Clinical Oral Investigations, 2019, 23, 2129-2141.	3.0	25
12	Difference assessment of composite resins and sound tooth applicable in the resin-imbedded tooth for resin repair using fluorescence, microhardness, DIAGNOdent, and X-ray image. Clinical Oral Investigations, 2019, 23, 293-301.	3.0	3
13	Dentin sealing and antibacterial effects of silver-doped bioactive glass/mesoporous silica nanocomposite: an in vitro study. Clinical Oral Investigations, 2019, 23, 253-266.	3.0	38
14	Effect of pH variation on flexural and compressive properties of composite resins. Korean Journal of Dental Materials, 2019, 46, 53-60.	0.1	0
15	Bleaching of stained resin using nitrogen doped-TiO2 nanoparticles. Korean Journal of Dental Materials, 2019, 46, 175-184.	0.1	1
16	Changes in hardness and microstructure of a Pd-Ag-In-Ga-based metal-ceramic alloy during porcelain firing simulation and subsequent cooling. Korean Journal of Dental Materials, 2019, 46, 229-242.	0.1	1
17	Effect of ice-quenching after oxidation treatment on hardening of a Pd-Cu-Ga-Zn alloy for bonding porcelain. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 83-91.	3.1	9
18	Antibacterial and remineralization effects of orthodontic bonding agents containing bioactive glass. Korean Journal of Orthodontics, 2018, 48, 163.	2.3	24

#	Article	IF	CITATIONS
19	Flexural and compressive properties of layered specimens formed with flowable and composite resins. Korean Journal of Dental Materials, 2018, 45, 129-138.	0.1	0
20	Effect of 457 nm light on the polymerization of dental composite resins. Korean Journal of Dental Materials, 2018, 45, 179-186.	0.1	0
21	Diagnosis and staging of caries using spectral factors derived from the blue laser-induced autofluorescence spectrum. Journal of Dentistry, 2017, 67, 77-83.	4.1	10
22	How light attenuation and filler content affect the microhardness and polymerization shrinkage and translucency of bulk-fill composites?. Clinical Oral Investigations, 2017, 21, 559-565.	3.0	57
23	Effect of Dentin Wetness on the Bond Strength of Universal Adhesives. Materials, 2017, 10, 1224.	2.9	44
24	Effects of light wavelength on the microhardenss and polymerization shrinkage of composite resins. Korean Journal of Dental Materials, 2017, 44, 367-376.	0.1	0
25	Spectral characteristics of caries-related autofluorescence spectra and their use for diagnosis of caries stage. Journal of Biomedical Optics, 2016, 21, 015001.	2.6	12
26	Effect of the 457 nm Laser on the Bond Strength of Orthodontic Brackets. Korean Journal of Dental Materials, 2016, 43, 143-150.	0.1	0
27	Change in hardness of an as-cast and softening heat-treated low-gold-content alloy for bonding porcelain by simulated porcelain firing and its mechanism. Gold Bulletin, 2015, 48, 39-46.	2.4	12
28	Effect of two lasers on the polymerization of composite resins: single vs combination. Lasers in Medical Science, 2015, 30, 1497-1503.	2.1	6
29	Hardening effect of pre- and post-firing heat treatment for a firing-simulated Au-Pd-In metal-ceramic alloy. Gold Bulletin, 2014, 47, 255-261.	2.4	15
30	Spinodal decomposition related to age-hardening and cuboidal structures in a dental low-carat gold alloy with relatively high Cu/Ag content ratio. Gold Bulletin, 2014, 47, 65-73.	2.4	2
31	Lamellar-forming grain boundary reaction related to age-hardening mechanism in an Au-Pt-Pd-In metal-ceramic alloy. Gold Bulletin, 2014, 47, 195-203.	2.4	1
32	Mechanical properties of composite resins light-cured using a blue DPSS laser. Lasers in Medical Science, 2013, 28, 597-604.	2.1	11
33	Effect of a DPSS laser on the shear bond strength of ceramic brackets with different base designs. Lasers in Medical Science, 2013, 28, 1461-1466.	2.1	6
34	Microstructural changes in grain interior and grain boundary by formation of metastable and stable phases related to age-hardening in an Au-Cu-Ag-Pd alloy. Journal of Materials Research, 2013, 28, 1211-1217.	2.6	4
35	Age-hardenability related to precipitation and lamellar-forming grain boundary reaction in dental low-carat gold alloy. International Journal of Materials Research, 2013, 104, 547-553.	0.3	0
36	Interaction of LED light with coinitiator-containing composite resins: Effect of dual peaks. Journal of Dentistry, 2012, 40, 836-842.	4.1	26

#	Article	IF	CITATIONS
37	Microhardness and polymerization shrinkage of flowable resins that are light cured using a blue laser. Lasers in Medical Science, 2012, 27, 729-733.	2.1	2
38	Diode-pumped solid-state laser for bonding orthodontic brackets: effect of light intensity and light-curing time. Lasers in Medical Science, 2011, 26, 585-589.	2.1	4
39	Age-hardening and overaging mechanisms related to the metastable phase formation by the decomposition of Ag and Cu in a dental Au–Ag–Cu–Pd–Zn alloy. Gold Bulletin, 2011, 44, 155-162.	2.4	5
40	Age-hardening characteristics of a dental low-carat gold alloy with dual hardener system of In and Cu. Gold Bulletin, 2011, 44, 223-230.	2.4	1
41	Age-hardening by miscibility limit in a multi-purpose dental gold alloy containing platinum. Gold Bulletin, 2010, 43, 42-48.	2.7	3
42	Age-hardening by grain interior and grain boundary precipitation in an Au-Ag-Pt-Zn-In alloy for multipurpose dental use. Gold Bulletin, 2010, 43, 316-323.	2.7	4
43	Effect of diode-pumped solid state laser on polymerization shrinkage and color change in composite resins. Lasers in Medical Science, 2010, 25, 339-343.	2.1	2
44	Effect of hydrogen peroxide on microhardness and color change of resin nanocomposites. American Journal of Dentistry, 2010, 23, 19-22.	0.1	10
45	Influence of flowable resins on the shear bond strength of orthodontic brackets. Dental Materials Journal, 2009, 28, 730-734.	1.8	36
46	Age-hardening behaviour of a spinodally decomposed low-carat gold alloy. Journal of Materials Science, 2008, 43, 1539-1545.	3.7	12
47	Hardening and overaging Mechanisms in an Au-Ag-Cu-Pd alloy with In additions. Gold Bulletin, 2008, 41, 257-263.	2.7	21
48	The applicability of DPSS laser for light curing of composite resins. Lasers in Medical Science, 2008, 23, 407-414.	2.1	18
49	Effect of Fluoride Released from Fluoride-containing Dental Restoratives on NiTi Orthodontic Wires. Dental Materials Journal, 2008, 27, 133-138.	1.8	12
50	Evaluation of polymerization of light-curing hybrid composite resins. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 76B, 106-113.	3.4	22
51	Effect of irradiation mode on polymerization of dental composite resins. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 78B, 253-258.	3.4	2
52	Effect of pH and temperature on orthodontic NiTi wires immersed in acidic fluoride solution. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 79B, 7-15.	3.4	30
53	Effect of Acetic NaF Solution on the Corrosion Behavior of Stainless Steel Orthodontic Brackets. Dental Materials Journal, 2006, 25, 339-344.	1.8	9
54	Effectiveness of an Er:YAG Laser in Etching the Enamel Surface for Orthodontic Bracket Retention. Dental Materials Journal, 2005, 24, 596-602.	1.8	28

#	Article	IF	CITATIONS
55	Evaluation of the effect of fluoride-containing acetic acid on NiTi wires. Journal of Biomedical Materials Research Part B, 2005, 72B, 102-108.	3.1	15
56	Effect of acidic fluoride solution on ? titanium alloy wire. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 73B, 285-290.	3.4	20
57	Change of Enamel after Er:YAG and CO2Laser Irradiation and Fluoride Treatment. Photomedicine and Laser Surgery, 2005, 23, 389-394.	2.0	33
58	Changes on NiTi Orthodontic Wired Due to Acidic Fluoride Solution. Dental Materials Journal, 2004, 23, 557-565.	1.8	17