Cecilia Tommos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1483197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	De Novo Proteins as Models of Radical Enzymesâ€. Biochemistry, 1999, 38, 9495-9507.	2.5	200
2	Structure of a de Novo Designed Protein Model of Radical Enzymes. Journal of the American Chemical Society, 2002, 124, 10952-10953.	13.7	71
3	Photochemical Tyrosine Oxidation in the Structurally Well-Defined α ₃ Y Protein: Proton-Coupled Electron Transfer and a Long-Lived Tyrosine Radical. Journal of the American Chemical Society, 2014, 136, 14039-14051.	13.7	68
4	Reversible voltammograms and a Pourbaix diagram for a protein tyrosine radical. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9739-9743.	7.1	61
5	Defining the Apoptotic Trigger. Journal of Biological Chemistry, 2015, 290, 30879-30887.	3.4	53
6	Electrochemical and Structural Properties of a Protein System Designed To Generate Tyrosine Pourbaix Diagrams. Journal of the American Chemical Society, 2011, 133, 17786-17795.	13.7	37
7	Formal Reduction Potentials of Difluorotyrosine and Trifluorotyrosine Protein Residues: Defining the Thermodynamics of Multistep Radical Transfer. Journal of the American Chemical Society, 2017, 139, 2994-3004.	13.7	34
8	Exploring amino-acid radical chemistry: protein engineering and de novo design. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1707, 103-116.	1.0	28
9	Reversible Phenol Oxidation and Reduction in the Structurally Well-Defined 2-Mercaptophenol-α ₃ C Protein. Biochemistry, 2013, 52, 1409-1418.	2.5	28
10	Pourbaix Diagram, Proton-Coupled Electron Transfer, and Decay Kinetics of a Protein Tryptophan Radical: Comparing the Redox Properties of W ₃₂ [•] and Y ₃₂ [•] Generated Inside the Structurally Characterized α ₃ W and α ₃ Y Proteins. Journal of the American Chemical Society, 2018, 140, 185-192.	13.7	28
11	Moving a Phenol Hydroxyl Group from the Surface to the Interior of a Protein:  Effects on the Phenol Potential and pKA. Biochemistry, 2005, 44, 11891-11902.	2.5	27
12	Formal Reduction Potential of 3,5-Difluorotyrosine in a Structured Protein: Insight into Multistep Radical Transfer. Biochemistry, 2013, 52, 8907-8915.	2.5	27
13	A >200 meV Uphill Thermodynamic Landscape for Radical Transport in <i>Escherichia coli</i> Ribonucleotide Reductase Determined Using Fluorotyrosine-Substituted Enzymes. Journal of the American Chemical Society, 2016, 138, 13706-13716.	13.7	27
14	Proton-Coupled Electron Transfer from Tyrosine in the Interior of a <i>de novo</i> Protein: Mechanisms and Primary Proton Acceptor. Journal of the American Chemical Society, 2020, 142, 11550-11559.	13.7	24
15	Improving yields of deuterated, methyl labeled protein by growing in H2O. Journal of Biomolecular NMR, 2018, 71, 263-273.	2.8	20
16	Properties of Site-Specifically Incorporated 3-Aminotyrosine in Proteins To Study Redox-Active Tyrosines: <i>Escherichia coli</i> Ribonucleotide Reductase as a Paradigm. Biochemistry, 2018, 57, 3402-3415.	2.5	12
17	Computing Proton-Coupled Redox Potentials of Fluorotyrosines in a Protein Environment. Journal of Physical Chemistry B, 2021, 125, 128-136.	2.6	7
18	Insights into the Thermodynamics and Kinetics of Amino-Acid Radicals in Proteins. Annual Review of Biophysics, 2022, 51, 453-471.	10.0	6

#	Article	IF	CITATIONS
19	A Quick and Colorful Method to Measure Low-Level Contaminations of Paramagnetic Ni2+ in Protein Samples Purified by Immobilized Metal Ion Affinity Chromatography. Methods in Enzymology, 2019, 614, 87-106.	1.0	4
20	Protease-stable DARPins as promising oral therapeutics. Protein Engineering, Design and Selection, 2021, 34, .	2.1	1