
Junâ€Ichi Mano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/14830/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catechins in green tea powder (matcha) are heat-stable scavengers of acrolein, a lipid peroxide-derived reactive carbonyl species. Food Chemistry, 2021, 355, 129403.	4.2	24
2	Arabidopsis aldehyde oxidase 3, known to oxidize abscisic aldehyde to abscisic acid, protects leaves from aldehyde toxicity. Plant Journal, 2021, 108, 1439-1455.	2.8	16
3	Plant apocarotenoid metabolism utilizes defense mechanisms against reactive carbonyl species and xenobiotics. Plant Physiology, 2021, 185, 331-351.	2.3	19
4	Lipid Peroxide-Derived Reactive Carbonyl Species as Mediators of Oxidative Stress and Signaling. Frontiers in Plant Science, 2021, 12, 720867.	1.7	30
5	Reactive Carbonyl Species Mediate Methyl Jasmonate-Induced Stomatal Closure. Plant and Cell Physiology, 2020, 61, 1788-1797.	1.5	21
6	Inactivation of Carbonyl-Detoxifying Enzymes by H2O2 Is a Trigger to Increase Carbonyl Load for Initiating Programmed Cell Death in Plants. Antioxidants, 2020, 9, 141.	2.2	14
7	Reactive oxygen species and reactive carbonyl species constitute a feedâ€forward loop in auxin signaling for lateral root formation. Plant Journal, 2019, 100, 536-548.	2.8	53
8	Reactive Carbonyl Species: A Missing Link in ROS Signaling. Plants, 2019, 8, 391.	1.6	77
9	Lipid peroxidation-derived reactive carbonyl species (RCS): Their interaction with ROS and cellular redox during environmental stresses. Environmental and Experimental Botany, 2019, 165, 139-149.	2.0	92
10	Detoxification of Reactive Carbonyl Species by Glutathione Transferase Tau Isozymes. Frontiers in Plant Science, 2019, 10, 487.	1.7	38
11	Reactive Carbonyl Species Function as Signal Mediators Downstream of H2O2 Production and Regulate [Ca2+]cyt Elevation in ABA Signal Pathway in Arabidopsis Guard Cells. Plant and Cell Physiology, 2019, 60, 1146-1159.	1.5	39
12	Analysis of Reactive Carbonyl Species Generated Under Oxidative Stress. Methods in Molecular Biology, 2018, 1743, 117-124.	0.4	14
13	High level of reduced glutathione contributes to detoxification of lipid peroxideâ€derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress. Physiologia Plantarum, 2017, 161, 211-223.	2.6	56
14	Acrolein-detoxifying isozymes of glutathione transferase in plants. Planta, 2017, 245, 255-264.	1.6	15
15	How do photosynthetic organisms manage light stress? A tribute to the late Professor Kozi Asada. Plant and Cell Physiology, 2016, 57, 1351-1353.	1.5	8
16	Reactive Carbonyl Species Activate Caspase-3-Like Protease to Initiate Programmed Cell Death in Plants. Plant and Cell Physiology, 2016, 57, pcw053.	1.5	50
17	Reactive Carbonyl Species Mediate ABA Signaling in Guard Cells. Plant and Cell Physiology, 2016, 57, 2552-2563.	1.5	42
18	Lipid Peroxide-Derived Short-Chain Carbonyls Mediate Hydrogen Peroxide-Induced and Salt-Induced Programmed Cell Death in Plants Â. Plant Physiology, 2015, 168, 885-898.	2.3	128

Jun'ichi Mano

#	Article	IF	CITATIONS
19	Identification of Oxidatively Modified Proteins in Salt-Stressed Arabidopsis: A Carbonyl-Targeted Proteomics Approach. Plant and Cell Physiology, 2014, 55, 1233-1244.	1.5	69
20	Maintenance of Chloroplast Structure and Function by Overexpression of the Rice <i>MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE</i> Gene Leads to Enhanced Salt Tolerance in Tobacco Â. Plant Physiology, 2014, 165, 1144-1155.	2.3	82
21	Acrolein is formed from trienoic fatty acids in chloroplast: A targeted metabolomics approach. Plant Biotechnology, 2014, 31, 535-543.	0.5	23
22	Modulation of activity and inhibitor sensitivity of rabbit aldose reductase-like protein (AKR1B19) by oxidized glutathione and SH-reagents. Chemico-Biological Interactions, 2013, 202, 146-152.	1.7	2
23	Differential Metabolisms of Green Leaf Volatiles in Injured and Intact Parts of a Wounded Leaf Meet Distinct Ecophysiological Requirements. PLoS ONE, 2012, 7, e36433.	1.1	135
24	Characterization of rabbit aldose reductase-like protein with 3β-hydroxysteroid dehydrogenase activity. Archives of Biochemistry and Biophysics, 2012, 527, 23-30.	1.4	10
25	Reactive carbonyl species: Their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiology and Biochemistry, 2012, 59, 90-97.	2.8	194
26	Characterization of raspberry ketone/zingerone synthase, catalyzing the alpha, beta-hydrogenation of phenylbutenones in raspberry fruits. Biochemical and Biophysical Research Communications, 2011, 412, 104-108.	1.0	42
27	Photoproduction of Catalase-Insensitive Peroxides on the Donor Side of Manganese-Depleted Photosystem II: Evidence with a Specific Fluorescent Probe. Biochemistry, 2011, 50, 10658-10665.	1.2	30
28	Accumulation of lipid peroxide-derived, toxic .ALPHA.,.BETAunsaturated aldehydes (E)-2-pentenal, acrolein and (E)-2-hexenal in leaves under photoinhibitory illumination. Plant Biotechnology, 2010, 27, 193-197.	0.5	49
29	The Involvement of Lipid Peroxide-Derived Aldehydes in Aluminum Toxicity of Tobacco Roots. Plant Physiology, 2010, 152, 1406-1417.	2.3	124
30	Evaluation of the toxicity of stress-related aldehydes to photosynthesis in chloroplasts. Planta, 2009, 230, 639-648.	1.6	89
31	Volatile Oxylipins and Related Compounds Formed Under Stress in Plants. , 2009, 580, 17-28.		19
32	Seed deterioration due to high humidity at high temperature is suppressed by extremely low frequency magnetic fields. Seed Science and Technology, 2006, 34, 189-192.	0.6	4
33	Protection against Photooxidative Injury of Tobacco Leaves by 2-Alkenal Reductase. Detoxication of Lipid Peroxide-Derived Reactive Carbonyls. Plant Physiology, 2005, 139, 1773-1783.	2.3	139
34	Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I. Archives of Biochemistry and Biophysics, 2004, 429, 71-80.	1.4	79
35	The NADPH:Quinone Oxidoreductase P1-ζ-crystallin in Arabidopsis Catalyzes the α,β-Hydrogenation of 2-Alkenals: Detoxication of the Lipid Peroxide-Derived Reactive Aldehydes. Plant and Cell Physiology, 2002, 43, 1445-1455.	1.5	134
36	Antioxidant capacity is correlated with susceptibility to leaf spot caused by a rapid temperature drop in Saintpaulia (African violet). Scientia Horticulturae, 2001, 88, 59-69.	1.7	16

Jun'ichi Mano

#	Article	IF	CITATIONS
37	Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochimica Et Biophysica Acta - Bioenergetics, 2001, 1504, 275-287.	0.5	137
38	Effects of fat crystallization on the behavior of proteins and lipids at oil droplet surfaces. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 183-188.	0.8	28
39	A novel NADPH:diamide oxidoreductase activity in Arabidopsis thaliana P1 ζ-crystallin. FEBS Journal, 2000, 267, 3661-3671.	0.2	43
40	Differential electron flow around photosystem I by two C4-photosynthetic-cell-specific ferredoxins. EMBO Journal, 2000, 19, 5041-5050.	3.5	54
41	Crystallization and preliminary X-ray crystallographic analysis of NADPH: azodicarbonyl/quinone oxidoreductase, a plant ζ-crystallin. BBA - Proteins and Proteomics, 2000, 1480, 374-376.	2.1	5
42	Reduction of Phenoxyl Radicals Mediated by Monodehydroascorbate Reductase. Biochemical and Biophysical Research Communications, 2000, 279, 949-954.	1.0	97
43	Thioredoxin Deficiency Causes the Constitutive Activation of Yap1, an AP-1-like Transcription Factor in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1999, 274, 28459-28465.	1.6	128
44	Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochemical Journal, 1998, 330, 811-817.	1.7	109
45	Increased Levels of Monodehydroascorbate Radical in UV-B-Irradiated Broad Bean Leaves. Plant and Cell Physiology, 1997, 38, 684-690.	1.5	62
46	Title is missing!. Photosynthesis Research, 1997, 53, 197-204.	1.6	50
47	Participation of the Superoxide Radical in the Beneficial Effect of Ascorbic Acid on Heat-induced Fish Meat Gel (Kamaboko). Bioscience, Biotechnology and Biochemistry, 1996, 60, 1966-1970.	0.6	12
48	Monodehydroascorbate Radical Detected by Electron Paramagnetic Resonance Spectrometry Is a Sensitive Probe of Oxidative Stress in Intact Leaves. Plant and Cell Physiology, 1996, 37, 1066-1072.	1.5	84
49	Photoproduction of the Azidyl Radical from the Azide Anion on the Oxidizing Side of Photosystem II and Suppression of Photooxidation of Tyrosine Z by the Azidyl Radical. Plant and Cell Physiology, 1995, 36, 1121-1129.	1.5	21
50	Photoinactivation of Photosystem II by in situ-Photoproduced Hydroxyurea Radicals. Biochemistry, 1994, 33, 10487-10493.	1.2	9
51	Steady-State Kinetics of Cabbage Histidinol Dehydrogenase. Archives of Biochemistry and Biophysics, 1994, 312, 493-500.	1.4	21
52	Inhibition of the catalase reaction of Photosystem II by anions. Photosynthesis Research, 1993, 38, 433-440.	1.6	15
53	Purification and Properties of a Monofunctional Imidazoleglycerol-Phosphate Dehydratase from Wheat. Plant Physiology, 1993, 103, 733-739.	2.3	24
54	Overexpression of plant histidinol dehydrogenase using a baculovirus expression vector system. Archives of Biochemistry and Biophysics, 1992, 295, 235-239.	1.4	16