Ulrich Kutschera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1482892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Forever young: stem cell and plant regeneration one century after Haberlandt 1921. Protoplasma, 2022, 259, 3-18.	1.0	4
2	The origin of chloroplasts: Constantin S. Merezhkowsky (1855–1921) and symbiogenesis. Journal of Plant Biochemistry and Biotechnology, 2022, 31, 178-184.	0.9	1
3	and Cells―(1892). Biological Theory, 2022, 17, 181-185.	0.8	0
4	On the historical roots of creationism and intelligent design: German Allmacht and Darwinian evolution in context. Theory in Biosciences, 2021, 140, 157-168.	0.6	2
5	Experimental plant research and the discovery of carbon dioxide-mediated global greening: a tribute to Wilhelm Pfeffer (1845–1920). Journal of Plant Biochemistry and Biotechnology, 2021, 30, 407-420.	0.9	2
6	Arabidopsis: two-hundredths anniversary of its name and the possibility of a hidden universal regulatory signal. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 575-579.	0.9	3
7	Thought experiment: a hidden signal and an etioreceptor. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 832-837.	0.9	1
8	Auxin action in developing maize coleoptiles: challenges and open questions. Plant Signaling and Behavior, 2020, 15, 1762327.	1.2	10
9	The Warburg-effects: basic metabolic processes with reference to cancer development and global photosynthesis. Plant Signaling and Behavior, 2020, 15, 1776477.	1.2	8
10	Ernst Haeckel, ancient forests, and the Anthropocene. Plant Signaling and Behavior, 2020, 15, 1719313.	1.2	2
11	Light and plant development: the discovery of phototropins by Winslow R. Briggs (1928–2019). Plant Signaling and Behavior, 2019, 14, e1652521.	1.2	3
12	Ernst Haeckel's prescient view. Nature, 2019, 570, 164-164.	13.7	1
13	Photomorphogenesis of the root system in developing sunflower seedlings: a role for sucrose. Plant Biology, 2019, 21, 627-633.	1.8	8
14	Ernst Haeckel (1834–1919): The German Darwin and his impact on modern biology. Theory in Biosciences, 2019, 138, 1-7.	0.6	15
15	Plasmodial slime molds and the evolution of microbial husbandry. Theory in Biosciences, 2019, 138, 127-132.	0.6	4
16	Julius Sachs (1868): The father of plant physiology. American Journal of Botany, 2018, 105, 656-666.	0.8	14
17	Phylogenetic and morphological resolution of the Helobdella stagnalisÂspecies-complex (Annelida:) Tj ETQq1	1 0.784314 r 0.2	gBT /Overloc
18	Julius von Sachs' forgotten 1897-article: sexuality and gender in plants vs. humans. Plant Signaling and	1.2	4

Behavior, 2018, 13, e1489671.

#	Article	IF	CITATIONS
19	Systems biology of eukaryotic superorganisms and the holobiont concept. Theory in Biosciences, 2018, 137, 117-131.	0.6	15
20	Regulation of root development in Arabidopsis thaliana by phytohormone-secreting epiphytic methylobacteria. Protoplasma, 2017, 254, 1867-1877.	1.0	18
21	Evolution â [~] †. , 2017, , .		2
22	Russia's new Lysenkoism. Current Biology, 2017, 27, R1042-R1047.	1.8	26
23	Peter Sitte (1929–2015): a theistic cell biologist. Protoplasma, 2017, 254, 1821-1822.	1.0	1
24	Boron and the evolutionary development of roots. Plant Signaling and Behavior, 2017, 12, e1320631.	1.2	11
25	From Goethe's plant archetype via Haeckel's biogenetic law to plant evo-devo 2016. Theory in Biosciences, 2017, 136, 49-57.	0.6	6
26	Seedling development in maize cv. B73 and blue light-mediated proteomic changes in the tip vs. stem of the coleoptile. Protoplasma, 2017, 254, 1317-1322.	1.0	5
27	Symbiogenesis and Cell Evolution: An Anti-Darwinian Research Agenda?. , 2017, , 309-331.		6
28	Sex-Gender-Conflicts in Aquatic Hermaphrodites: are Genes Immortal?. Journal of Marine Science: Research & Development, 2017, 07, .	0.4	1
29	Haeckel's Biogenetic Law and the Land Plant Phylotypic Stage. BioScience, 2016, 66, 510-519.	2.2	10
30	Plant gnotobiology: Epiphytic microbes and sustainable agriculture. Plant Signaling and Behavior, 2016, 11, e1256529.	1.2	9
31	Haeckel's 1866 tree of life and the origin of eukaryotes. Nature Microbiology, 2016, 1, 16114.	5.9	21
32	Ernst Haeckel's biodynamics 1866 and the occult basis of organic farming. Plant Signaling and Behavior, 2016, 11, e1199315.	1.2	5
33	The evolution of the plant genome-to-morphology auxin circuit. Theory in Biosciences, 2016, 135, 175-186.	0.6	5
34	Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation. Protoplasma, 2016, 253, 3-14.	1.0	45
35	Phototropic solar tracking in sunflower plants: an integrative perspective. Annals of Botany, 2016, 117, 1-8.	1.4	46
36	Julius Sachs (1832–1897) and the Unity of Life. Plant Signaling and Behavior, 2015, 10, e1079679.	1.2	8

#	Article	IF	CITATIONS
37	150 years of an integrative plant physiology. Nature Plants, 2015, 1, 15131.	4.7	12
38	Salinity Stiffens the Epidermal Cell Walls of Salt-Stressed Maize Leaves: Is the Epidermis Growth-Restricting?. PLoS ONE, 2015, 10, e0118406.	1.1	57
39	Basic versus applied research: Julius Sachs (1832–1897) and the experimental physiology of plants. Plant Signaling and Behavior, 2015, 10, e1062958.	1.2	8
40	A prescient view of women in evolution. Nature, 2015, 523, 35-35.	13.7	1
41	Historical revisionism and the inheritance theories of Darwin and Weismann. Die Naturwissenschaften, 2015, 102, 27.	0.6	2
42	Species-specific cell mobility of bacteria-feeding myxamoebae in plasmodial slime molds. Plant Signaling and Behavior, 2015, 10, e1074368.	1.2	8
43	Kleiber's Law: How the <i>Fire of Life</i> ignited debate, fueled theory, and neglected plants as model organisms. Plant Signaling and Behavior, 2015, 10, e1036216.	1.2	15
44	Leeches of the genus Helobdella as model organisms for Evo-Devo studies. Theory in Biosciences, 2015, 134, 93-104.	0.6	14
45	Darwinâ€Wallace Demons: survival of the fastest in populations of duckweeds and the evolutionary history of an enigmatic group of angiosperms. Plant Biology, 2015, 17, 24-32.	1.8	23
46	Der Texas-Plattegel und die Evo-Devo-Forschung. Biologie in Unserer Zeit, 2014, 44, 223-224.	0.3	0
47	Assembly and loss of the polar flagellum in plant-associated methylobacteria. Die Naturwissenschaften, 2014, 101, 339-346.	0.6	13
48	Chromosome numbers in representative myxomycetes: a cytogenetic study. Mycological Progress, 2014, 13, 189-192.	0.5	6
49	Did meiosis evolve before sex and the evolution of eukaryotic life cycles?. BioEssays, 2014, 36, 1091-1101.	1.2	19
50	Blue Light-Induced Proteomic Changes in Etiolated <i>Arabidopsis</i> Seedlings. Journal of Proteome Research, 2014, 13, 2524-2533.	1.8	35
51	Amphimixis and the individual in evolving populations: does Weismann's Doctrine apply to all, most or a few organisms?. Die Naturwissenschaften, 2014, 101, 357-372.	0.6	13
52	An early champion of women's rights. Nature, 2014, 510, 218-218.	13.7	1
53	The European medicinal leech Hirudo medicinalis L.: Morphology and occurrence of an endangered species. Zoosystematics and Evolution, 2014, 90, 271-280.	0.4	18
54	The ornithologist Alfred Russel Wallace and the controversy surrounding the dinosaurian origin of birds. Theory in Biosciences, 2013, 132, 267-275.	0.6	0

#	Article	IF	CITATIONS
55	Alfred Russel Wallace (1823–1913): the forgotten co-founder of the Neo-Darwinian theory of biological evolution. Theory in Biosciences, 2013, 132, 207-214.	0.6	17
56	Alfred Russel Wallace and the destruction of island life: the Iguana tragedy. Theory in Biosciences, 2013, 132, 259-265.	0.6	2
57	Metabolic scaling theory in plant biology and the three oxygen paradoxa of aerobic life. Theory in Biosciences, 2013, 132, 277-288.	0.6	7
58	Description of a new leech species from North America, <i>Helobdella austinensis</i> n. sp. (Hirudinea:) Tj ETQq0 0 239-246.	0 rgBT /0 0.4	Overlock 10 ⁻ 29
59	Seedling development in buckwheat and the discovery of the photomorphogenic shadeâ€avoidance response. Plant Biology, 2013, 15, 931-940.	1.8	34
60	Methylobacteria isolated from bryophytes and the 2-fold description of the same microbial species. Plant Signaling and Behavior, 2013, 8, e23091.	1.2	6
61	Cell division and turgor-driven stem elongation in juvenile plants: A synthesis. Plant Science, 2013, 207, 45-56.	1.7	61
62	Do mudskippers and lungfishes elucidate the early evolution of four-limbed vertebrates?. Evolution: Education and Outreach, 2013, 6, .	0.3	12
63	The Age of Man: A Father Figure. Science, 2013, 340, 1287-1287.	6.0	6
64	Wallace pioneered astrobiology too. Nature, 2012, 489, 208-208.	13.7	4
65	Hilfreiche Blutsauger in der Medizin und ihre Systematik. Biologie in Unserer Zeit, 2012, 42, 352-353.	0.3	2
66	Organ-specific rates of cellular respiration in developing sunflower seedlings and their bearing on metabolic scaling theory. Protoplasma, 2012, 249, 1049-1057.	1.0	17
67	Plant Development, Auxin, and the Subsystem Incompleteness Theorem. Frontiers in Plant Science, 2012, 3, 37.	1.7	19
68	Brassinosteroid action in flowering plants: a Darwinian perspective. Journal of Experimental Botany, 2012, 63, 3511-3522.	2.4	63
69	The Hirudo medicinalis species complex. Die Naturwissenschaften, 2012, 99, 433-434.	0.6	17
70	Rapid auxinâ€mediated changes in the proteome of the epidermal cells in rye coleoptiles: implications for the initiation of growth. Plant Biology, 2012, 14, 420-427.	1.8	17
71	Konvergente Evolution der Beutefangmechanismen bei Meeresquallen und Schwarmfischen. Biologie in Unserer Zeit, 2012, 42, 17-18.	0.3	0
72	Lynn Margulis: Symbiogenesis-Theorie und Anti-Darwinismus. Biologie in Unserer Zeit, 2012, 42, 67-70.	0.3	0

#	Article	IF	CITATIONS
73	Root phototropism: from dogma to the mechanism of blue light perception. Planta, 2012, 235, 443-452.	1.6	65
74	Medicinal Leeches: Historical use, Ecology, Genetics and Conservation. Freshwater Reviews: A Journal of the Freshwater Biological Association, 2011, 4, 21-41.	1.0	61
75	The Restless Plant. By DovÂKoller; edited by, ElizabethÂVan Volkenburgh. Cambridge (Massachusetts): Harvard University Press. \$39.95. xvii + 206 p.; ill.; index. ISBN: 978â€0â€674â€04863â€8. 2011 Quarterly Revie Biology, 2011, 86, 355-356.	evoaf	1
76	A new species of <i>Physarum</i> (<i>Myxomycetes</i>) from a boreal pine forest in Thuringia (Germany). Mycotaxon, 2011, 114, 7-14.	0.1	7
77	Lay aside the ladder of descent. Nature, 2011, 471, 37-37.	13.7	1
78	From the scala naturae to the symbiogenetic and dynamic tree of life. Biology Direct, 2011, 6, 33.	1.9	59
79	The Golden Gate Leech <i>Helobdella californica</i> (Hirudinea: Glossiphoniidae): Occurrence and DNAâ€Based Taxonomy of a Species Restricted to San Francisco. International Review of Hydrobiology, 2011, 96, 286-295.	0.5	10
80	Der altruistische Golden Gateâ€Egel und das ITISâ€Projekt. Biologie in Unserer Zeit, 2011, 41, 288-289.	0.3	1
81	A novel growth-promoting microbe, <i>Methylobacterium funariae </i> sp. nov., isolated from the leaf surface of a common moss. Plant Signaling and Behavior, 2011, 6, 510-515.	1.2	43
82	Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 870-876.	0.8	38
83	Ontogenetic changes in the scaling of cellular respiration with respect to size among sunflower seedlings. Plant Signaling and Behavior, 2011, 6, 72-76.	1.2	17
84	In the shadow of Darwin: Anton de Bary's origin of myxomycetology and a molecular phylogeny of the plasmodial slime molds. Theory in Biosciences, 2010, 129, 15-23.	0.6	24
85	Leaf development, gas exchange characteristics, and photorespiratory activity in maize seedlings. Photosynthetica, 2010, 48, 617-622.	0.9	12
86	Der Freiburger BÄ e hle-Egel und die Alpha-Taxonomie. Biologie in Unserer Zeit, 2010, 40, 374-375.	0.3	1
87	The evolution of the land plant life cycle. New Phytologist, 2010, 185, 27-41.	3.5	153
88	Darwin's geological time dilemma. Nature Geoscience, 2010, 3, 71-72.	5.4	2
89	Charles Darwin's Observations on the Behaviour of Earthworms and the Evolutionary History of a Giant Endemic Species from Germany,Lumbricus badensis(Oligochaeta: Lumbricidae). Applied and Environmental Soil Science, 2010, 2010, 1-11.	0.8	10
90	Cessation of coleoptile elongation and loss of auxin sensitivity in developing rye seedlings: A quantitative proteomic analysis. Plant Signaling and Behavior, 2010, 5, 509-517.	1.2	22

#	Article	IF	CITATIONS
91	In the Wake of Charles Darwin and Beyond: A Tribute to Ernst Mayr. Evolution: Education and Outreach, 2009, 2, 564-566.	0.3	2
92	Darwin's Philosophical Imperative and the Furor Theologicus. Evolution: Education and Outreach, 2009, 2, 688-694.	0.3	3
93	Symbiogenesis, natural selection, and the dynamic Earth. Theory in Biosciences, 2009, 128, 191-203.	0.6	28
94	Charles Darwin's Origin of Species, directional selection, and the evolutionary sciences today. Die Naturwissenschaften, 2009, 96, 1247-1263.	0.6	31
95	Evolutionary plant physiology: Charles Darwin's forgotten synthesis. Die Naturwissenschaften, 2009, 96, 1339-1354.	0.6	38
96	Struggle to translate Darwin's view of concurrency. Nature, 2009, 458, 967-967.	13.7	6
97	From Charles Darwin's botanical countryâ€house studies to modern plant biology. Plant Biology, 2009, 11, 785-795.	1.8	39
98	The evolutionary development of plant body plans. Functional Plant Biology, 2009, 36, 682.	1.1	61
99	Creationism in Germany and its Possible Cause. Evolution: Education and Outreach, 2008, 1, 84-86.	0.3	23
100	Methylotrophic bacteria on the surfaces of field-grown sunflower plants: a biogeographic perspective. Theory in Biosciences, 2008, 127, 23-29.	0.6	27
101	Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin's primordial intermediate form. Theory in Biosciences, 2008, 127, 277-289.	0.6	30
102	Darwin–Wallace principle of natural selection. Nature, 2008, 453, 27-27.	13.7	17
103	The pacemaker of plant growth. Trends in Plant Science, 2008, 13, 105-107.	4.3	16
104	The Growing Outer Epidermal Wall: Design and Physiological Role of a Composite Structure. Annals of Botany, 2008, 101, 615-621.	1.4	127
105	From Darwinism to Evolutionary Biology. Science, 2008, 321, 1157-1158.	6.0	13
106	Plant-Associated Methylobacteria as Co-Evolved Phytosymbionts. Plant Signaling and Behavior, 2007, 2, 74-78.	1.2	102
107	Palaeobiology: the origin and evolution of a scientific discipline. Trends in Ecology and Evolution, 2007, 22, 172-173.	4.2	3
108	The epidermal-growth-control theory of stem elongation: An old and a new perspective. Journal of Plant Physiology, 2007, 164, 1395-1409.	1.6	213

#	Article	IF	CITATIONS
109	Leeches underline the need for linnaean taxonomy. Nature, 2007, 447, 775-775.	13.7	10
110	Cluster formation in liverwort-associated methylobacteria and its implications. Die Naturwissenschaften, 2007, 94, 687-692.	0.6	11
111	The European land leech: biology and DNA-based taxonomy of a rare species that is threatened by climate warming. Die Naturwissenschaften, 2007, 94, 967-974.	0.6	24
112	Acid Growth and Plant Development. Science, 2006, 311, 952b-954b.	6.0	40
113	Mudskippers undermine ID claims on macroevolution. Nature, 2006, 439, 534-534.	13.7	3
114	Photosynthesis research on yellowtops: Macroevolution in progress. Theory in Biosciences, 2006, 125, 81-92.	0.6	9
115	Moss-associated methylobacteria as phytosymbionts: an experimental study. Die Naturwissenschaften, 2006, 93, 480-486.	0.6	35
116	Endosymbiosis, cell evolution, and speciation. Theory in Biosciences, 2005, 124, 1-24.	0.6	119
117	Molecular phylogeny of selected predaceous leeches with reference to the evolution of body size and terrestrialism. Theory in Biosciences, 2005, 124, 55-64.	0.6	16
118	Growth in liverworts of the Marchantiales is promoted by epiphytic methylobacteria. Die Naturwissenschaften, 2005, 92, 347-349.	0.6	21
119	Cannibalism in a Population of the Medicinal Leech (Hirudo medicinalis L.). Biology Bulletin, 2005, 32, 626-628.	0.1	12
120	Cannibalism in a population of the medicinal leech (Hirudo medicinalis L.). Izvestiia Akademii Nauk Seriia Biologicheskaia / Rossiiskaia Akademiia Nauk, 2005, , 751-3.	0.0	1
121	The Biophysical Basis of Cell Elongation and Organ Maturation in Coleoptiles of Rye Seedlings: Implications for Shoot Development 1. Plant Biology, 2004, 6, 158-164.	1.8	8
122	The modern theory of biological evolution: an expanded synthesis. Die Naturwissenschaften, 2004, 91, 255-76.	0.6	197
123	The occurrence of an Australian leech species (genus Helobdella) in German freshwater habitats as revealed by mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 2004, 33, 214-219.	1.2	21
124	A comparative analysis of the Darwin-Wallace papers and the development of the concept of natural selection. Theory in Biosciences, 2003, 122, 343-359.	0.6	34
125	Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution. Applied Physics B: Lasers and Optics, 2003, 77, 391-397.	1.1	129
126	The Feeding Strategies of the LeechErpobdella octoculata (L.): A Laboratory Study. International Review of Hydrobiology, 2003, 88, 94-101.	0.5	34

#	Article	IF	CITATIONS
127	Designer scientific literature. Nature, 2003, 423, 116-116.	13.7	5
128	Plant development in the absence of epiphytic microorganisms. Die Naturwissenschaften, 2002, 89, 319-321.	0.6	7
129	Sucrose metabolism and cellulose biosynthesis in sunflower hypocotyls. Physiologia Plantarum, 2002, 114, 372-379.	2.6	19
130	Interaction between Cytokinesis-Related Callose and Cortical Microtubules in Dividing Cells of the LiverwortRiella helicophylla. Plant Biology, 2002, 4, 619-624.	1.8	13
131	Epiphytic Bacteria Associated with the BryophyteFunaria hygrometrica:Effects ofMethylobacteriumStrains on Protonema Development. Plant Biology, 2002, 4, 682-687.	1.8	60
132	Occurrence and phylogenetic significance of cytokinesis-related callose in green algae, bryophytes, ferns and seed plants. Plant Cell Reports, 2001, 20, 143-149.	2.8	77
133	The evolution of parental care in freshwater leeches. Theory in Biosciences, 2001, 120, 115-137.	0.6	65
134	Gravitropism of axial organs in multicellular plants. Advances in Space Research, 2001, 27, 851-860.	1.2	19
135	Deposition of Cytokinesis-Related Callose in Riella helicophylla and Arabidopsis thaliana. Effects of Photolytically Altered Nifedipine. Plant Biology, 2001, 3, 311-318.	1.8	10
136	Stem Elongation and Cell Wall Proteins in Flowering Plants. Plant Biology, 2001, 3, 466-480.	1.8	30
137	The Evolution of Parental Care in Freshwater Leeches. Theory in Biosciences, 2001, 120, 115-137.	0.6	19
138	Effects of Gibberellin on Cellulose Biosynthesis and Membrane-associated Sucrose Synthase Activity in Pea Internodes. Journal of Plant Physiology, 2000, 156, 570-573.	1.6	8
139	Sucrose metabolism during Agrobacterium tumefaciens — induced tumor growth in sunflower hypocotyls. Journal of Plant Physiology, 2000, 157, 1-6.	1.6	2
140	Rapid Light-Induced Enhancement of Sucrose Catabolism in the Apical Hook of Sunflower Hypocotyls. Journal of Plant Physiology, 1999, 155, 538-542.	1.6	4
141	Fusicoccin-Induced Growth and Dark Respiration in Rye Coleoptiles. Journal of Plant Physiology, 1999, 154, 554-556.	1.6	4
142	Sucrose metabolism during apical hook opening in sunflower hypocotyls. Plant Physiology and Biochemistry, 1998, 36, 389-394.	2.8	3
143	Re-Examination of the solute-import hypothesis of gibberellin action in developing pea internodes. Journal of Plant Physiology, 1998, 153, 693-699.	1.6	4
144	The role of the cotyledons and primary leaves during seedling establishment in sunflower. Journal of Plant Physiology, 1998, 153, 700-705.	1.6	14

#	Article	IF	CITATIONS
145	In growing epidermal cells of rye coleoptiles microtubules are associated with the nuclei. Journal of Plant Physiology, 1998, 152, 463-467.	1.6	13
146	Effect of white light on cell expansion and lipid netabolism in sunflower cotyledons. Journal of Plant Physiology, 1997, 151, 590-594.	1.6	7
147	Cell number and organ size in developing sunflower hypocotyls. Journal of Plant Physiology, 1997, 151, 379-381.	1.6	5
148	Sucrose Metabolism and Lipid Mobilization during Light-Induced Expansion of Sunflower Cotyledons. Journal of Plant Physiology, 1996, 147, 553-558.	1.6	22
149	Pigment Accumulation, Dark Respiration and Photosynthesis during the Greening of Sunflower Cotyledons. Journal of Plant Physiology, 1996, 147, 567-572.	1.6	7
150	Pigment Accumulation and Photosynthesis in Developing Rye Coleoptiles. Botanica Acta, 1996, 109, 194-198.	1.6	7
151	Effect of white light on meristematic activity in developing sunflower hypocotyls. Protoplasma, 1996, 192, 123-129.	1.0	3
152	Cessation of cell elongation in rye coleoptiles is accompanied by a loss of cell-wall plasticity. Journal of Experimental Botany, 1996, 47, 1387-1394.	2.4	40
153	Mobilization of Starch after Submergence of Air-Grown Rice Coleoptiles. Implications for Growth and Gravitropism. Botanica Acta, 1995, 108, 266-269.	1.6	9
154	Changes in Soluble Sugars and Proteins during Development of Rye Coleoptiles. Journal of Plant Physiology, 1995, 146, 121-125.	1.6	20
155	Tissue Pressure and Cell Turgor in Axial Plant Organs: Implications for the Organismal Theory of Multicellularity. Journal of Plant Physiology, 1995, 146, 126-132.	1.6	25
156	Sucrose metabolism and cell elongation in developing sunflower hypocotyls. Journal of Experimental Botany, 1995, 46, 631-638.	2.4	39
157	The current status of the acidâ \in growth hypothesis. New Phytologist, 1994, 126, 549-569.	3.5	119
158	Cell elongation, turgor and osmotic pressure in developing sunflower hypocotyls. Journal of Experimental Botany, 1994, 45, 591-595.	2.4	21
159	Thickness and Structure of the Cell Walls in Developing Rye Coleoptiles. Journal of Plant Physiology, 1994, 144, 714-719.	1.6	19
160	Chloroplast Development in Rye Coleoptiles. Botanica Acta, 1994, 107, 12-17.	1.6	6
161	Tissue pressure and cell-wall metabolism in auxin-mediated growth of sunflower hypocotyls. Journal of Plant Physiology, 1993, 142, 467-473.	1.6	18
162	Rapid Auxin-Induced Enhancement of Protein Biosynthesis in Rye Coleoptiles. Journal of Plant Physiology, 1993, 142, 343-346.	1.6	17

#	Article	IF	CITATIONS
163	Turgor Pressure and Elongation Growth in Developing Sunflower Hypocotyls. Journal of Plant Physiology, 1993, 141, 757-758.	1.6	14
164	Analysis of the Growth Response of Airâ€Grown Rice Coleoptiles to Submergence. Botanica Acta, 1993, 106, 164-169.	1.6	13
165	Turgor and Longitudinal Tissue 12Helianthus annuus. Journal of Experimental Botany, 1992, 43, 1577-1581.	2.4	20
166	The Role of the Epidermis in the Control of Elongation Growth in Stems and Coleoptiles. Botanica Acta, 1992, 105, 246-252.	1.6	105
167	Osmotic Relations during Elongation Growth in Coleoptiles of Five Cereal Species. Journal of Plant Physiology, 1992, 139, 519-522.	1.6	15
168	Role of the Cotyledons in the Maintenance of Hypocotyl Growth in Helianthus annuus L Journal of Plant Physiology, 1992, 140, 319-323.	1.6	11
169	Light-induced inhibition of elongation growth in sunflower hypocotyls. Protoplasma, 1992, 168, 7-13.	1.0	32
170	Determination of the Longitudinal Tissue Stresses in the Growing and Non-Growing Regions of Sunflower Hypocotyls. Journal of Plant Physiology, 1991, 138, 460-465.	1.6	16
171	Effects of submergence on development and gravitropism in the coleoptile of Oryza sativa L Planta, 1991, 183, 112-9.	1.6	17
172	Osmotic relations during elongation growth in hypocotyls of Helianthus annum L. Planta, 1991, 184, 61-6.	1.6	27
173	Cell-wall synthesis and elongation growth in hypocotyls of Helianthus annuus L Planta, 1990, 181, 316-23.	1.6	65
174	Auxin Enhancement of mRNAs in Epidermis and Internal Tissues of the Pea Stem and Its Significance for Control of Elongation. Plant Physiology, 1990, 93, 432-438.	2.3	38
175	Tissue stresses in growing plant organs. Physiologia Plantarum, 1989, 77, 157-163.	2.6	130
176	Growth, in-vivo extensibility and tissue tension in mung bean seedlings subjected to water stress. Plant Science, 1989, 61, 1-7.	1.7	17
177	Particles Associated with the Outer Epidermal Wall in Internodes of Deepwater Rice. Annals of Botany, 1989, 63, 385-388.	1.4	11
178	Interaction between cortical cylinder and epidermis during auxin-mediated growth in pea internodes. Plant Science, 1988, 54, 23-28.	1.7	16
179	The Biophysical Basis of Elongation Growth in Internodes of Deepwater Rice. Plant Physiology, 1988, 88, 361-366.	2.3	58
180	Growth, <i>in Vivo</i> Extensibility, and Tissue Tension in Developing Pea Internodes. Plant Physiology, 1988, 86, 306-311.	2.3	34

#	Article	IF	CITATIONS
181	Differential Effect of Auxin on in Vivo Extensibility of Cortical Cylinder and Epidermis in Pea Internodes. Plant Physiology, 1987, 84, 1361-1366.	2.3	87
182	Rapid auxin-induced stimulation of cell wall synthesis in pea internodes. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 2747-2751.	3.3	59
183	Cooperation of epidermis and inner tissues in auxin-mediated growth of maize coleoptiles. Planta, 1987, 170, 168-180.	1.6	237
184	A leech that feeds its young. Animal Behaviour, 1986, 34, 941-942.	0.8	16
185	Effect of auxin and abscisic acid on cell wall extensibility in maize coleoptiles. Planta, 1986, 167, 527-535.	1.6	124
186	In-vivo measurement of cell-wall extensibility in maize coleoptiles: Effects of auxin and abscisic acid. Planta, 1986, 169, 437-442.	1.6	64
187	Evidence against the acid-growth theory of auxin action. Planta, 1985, 163, 483-493.	1.6	188
188	Evidence for the acid-growth theory of fusicoccin action. Planta, 1985, 163, 494-499.	1.6	79