
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1482865/publications.pdf Version: 2024-02-01



HELCE REATTERÃ

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Carbon Emissions of Infrastructure Development. Environmental Science & Technology, 2013, 47, 11739-11746.                                                                                                         | 10.0 | 314       |
| 2  | Projection of Construction and Demolition Waste in Norway. Journal of Industrial Ecology, 2008, 11, 27-39.                                                                                                         | 5.5  | 145       |
| 3  | Dynamic material flow analysis for Norway's dwelling stock. Building Research and Information, 2007, 35, 557-570.                                                                                                  | 3.9  | 138       |
| 4  | Energy consumption, costs and environmental impacts for urban water cycle services: Case study of<br>Oslo (Norway). Energy, 2011, 36, 792-800.                                                                     | 8.8  | 137       |
| 5  | Dynamic building stock modelling: Application to 11 European countries to support the energy efficiency and retrofit ambitions of the EU. Energy and Buildings, 2016, 132, 26-38.                                  | 6.7  | 128       |
| 6  | Understanding the water-energy-carbon nexus in urban water utilities: Comparison of four city case studies and the relevant influencing factors. Energy, 2014, 75, 153-166.                                        | 8.8  | 123       |
| 7  | Sustainable management of demolition waste—an integrated model for the evaluation of<br>environmental, economic and social aspects. Resources, Conservation and Recycling, 2003, 38, 317-334.                      | 10.8 | 96        |
| 8  | Multi-criteria decision analysis (MCDA) method for assessing the sustainability of end-of-life<br>alternatives for waste plastics: A case study of Norway. Science of the Total Environment, 2020, 719,<br>137353. | 8.0  | 76        |
| 9  | Towards modelling of construction, renovation and demolition activities: Norway's dwelling stock,<br>1900–2100. Building Research and Information, 2008, 36, 412-425.                                              | 3.9  | 69        |
| 10 | Environmental Life Cycle Assessment of Bridges. Journal of Bridge Engineering, 2013, 18, 153-161.                                                                                                                  | 2.9  | 67        |
| 11 | Combined MFA‣CA for Analysis of Wastewater Pipeline Networks. Journal of Industrial Ecology, 2009, 13, 532-550.                                                                                                    | 5.5  | 64        |
| 12 | Dynamic building stock modelling: General algorithm and exemplification for Norway. Energy and Buildings, 2016, 132, 13-25.                                                                                        | 6.7  | 56        |
| 13 | Waste prevention, energy recovery or recycling - Directions for household food waste management<br>in light of circular economy policy. Resources, Conservation and Recycling, 2020, 160, 104908.                  | 10.8 | 56        |
| 14 | Using a dynamic segmented model to examine future renovation activities in the Norwegian dwelling stock. Energy and Buildings, 2014, 82, 287-295.                                                                  | 6.7  | 55        |
| 15 | Exploring the pathway from zero-energy to zero-emission building solutions: A case study of a<br>Norwegian office building. Energy and Buildings, 2019, 188-189, 84-97.                                            | 6.7  | 55        |
| 16 | Life cycle assessment of the water and wastewater system in Trondheim, Norway – A case study. Urban<br>Water Journal, 2014, 11, 323-334.                                                                           | 2.1  | 54        |
| 17 | Choice of mineral fertilizer substitution principle strongly influences LCA environmental benefits of nutrient cycling in the agri-food system. Science of the Total Environment, 2018, 615, 219-227.              | 8.0  | 49        |
| 18 | LCA modelling for Zero Emission Neighbourhoods in early stage planning. Building and Environment,<br>2019, 149, 379-389.                                                                                           | 6.9  | 48        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Large potentials for energy saving and greenhouse gas emission reductions from large-scale<br>deployment of zero emission building technologies in a national building stock. Energy Policy, 2021,<br>152, 112114.        | 8.8  | 47        |
| 20 | Using a segmented dynamic dwelling stock model for scenario analysis of future energy demand: The dwelling stock of Norway 2016–2050. Energy and Buildings, 2017, 146, 220-232.                                           | 6.7  | 42        |
| 21 | Comparative emission analysis of low-energy and zero-emission buildings. Building Research and Information, 2018, 46, 367-382.                                                                                            | 3.9  | 41        |
| 22 | Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock. Journal of Industrial Ecology, 2021, 25, 419-434.                                                         | 5.5  | 41        |
| 23 | Exploring built environment stock metabolism and sustainability by systems analysis approaches.<br>Building Research and Information, 2009, 37, 569-582.                                                                  | 3.9  | 40        |
| 24 | Dynamic Ecoâ€Efficiency Projections for Construction and Demolition Waste Recycling Strategies at the City Level. Journal of Industrial Ecology, 2008, 12, 52-68.                                                         | 5.5  | 39        |
| 25 | Asset Management for Urban Wastewater Pipeline Networks. Journal of Infrastructure Systems, 2010,<br>16, 112-121.                                                                                                         | 1.8  | 39        |
| 26 | Analysis of energy and carbon flows in the future Norwegian dwelling stock. Building Research and<br>Information, 2012, 40, 123-139.                                                                                      | 3.9  | 39        |
| 27 | LCA for household waste management when planning a new urban settlement. Waste Management,<br>2012, 32, 1482-1490.                                                                                                        | 7.4  | 38        |
| 28 | Estimating dynamic climate change effects of material use in buildings—Timing, uncertainty, and emission sources. Building and Environment, 2021, 187, 107399.                                                            | 6.9  | 37        |
| 29 | Toward a Methods Framework for Eco-efficiency Analysis?. Journal of Industrial Ecology, 2005, 9, 9-11.                                                                                                                    | 5.5  | 35        |
| 30 | Metabolism-modelling approaches to long-term sustainability assessment of urban water services.<br>Urban Water Journal, 2017, 14, 11-22.                                                                                  | 2.1  | 35        |
| 31 | A review of environmental impacts of winter road maintenance. Cold Regions Science and Technology, 2019, 158, 143-153.                                                                                                    | 3.5  | 35        |
| 32 | An analytical method for evaluating and visualizing embodied carbon emissions of buildings. Building and Environment, 2020, 168, 106476.                                                                                  | 6.9  | 35        |
| 33 | Influence of assumptions about household waste composition in waste management LCAs. Waste<br>Management, 2013, 33, 212-219.                                                                                              | 7.4  | 33        |
| 34 | Sensitivity analysis in long-term dynamic building stock modeling—Exploring the importance of<br>uncertainty of input parameters in Norwegian segmented dwelling stock model. Energy and Buildings,<br>2014, 85, 136-144. | 6.7  | 33        |
| 35 | Assessment of Food Waste Prevention and Recycling Strategies Using a Multilayer Systems Approach.<br>Environmental Science & Technology, 2015, 49, 13937-13945.                                                           | 10.0 | 33        |
| 36 | Investigating Crossâ€Sectoral Synergies through Integrated Aquaculture, Fisheries, and Agriculture<br>Phosphorus Assessments: A Case Study of Norway. Journal of Industrial Ecology, 2016, 20, 867-881.                   | 5.5  | 33        |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Historical energy analysis of the Norwegian dwelling stock. Building Research and Information, 2011, 39, 1-15.                                                                                     | 3.9  | 32        |
| 38 | Dynamic metabolism modelling of urban water services – Demonstrating effectiveness as a<br>decision-support tool for Oslo, Norway. Water Research, 2014, 61, 19-33.                                | 11.3 | 31        |
| 39 | A multi-regional soil phosphorus balance for exploring secondary fertilizer potential: the case of<br>Norway. Nutrient Cycling in Agroecosystems, 2016, 104, 307-320.                              | 2.2  | 30        |
| 40 | Environmental impact analysis of chemicals and energy consumption in wastewater treatment plants:<br>case study of Oslo, Norway. Water Science and Technology, 2011, 63, 1018-1031.                | 2.5  | 29        |
| 41 | Exploring urban mines: pipe length and material stocks in urban water and wastewater networks.<br>Urban Water Journal, 2014, 11, 274-283.                                                          | 2.1  | 29        |
| 42 | Explaining the historical energy use in dwelling stocks with a segmented dynamic model: Case study of<br>Norway 1960–2015. Energy and Buildings, 2016, 132, 141-153.                               | 6.7  | 28        |
| 43 | Is a net life cycle balance for energy and materials achievable for a zero emission single-family<br>building in Norway?. Energy and Buildings, 2018, 168, 457-469.                                | 6.7  | 28        |
| 44 | Using Material Flow Analysis (MFA) to generate the evidence on plastic waste management from commercial fishing gears in Norway. Resources Conservation & Recycling X, 2020, 5, 100024.            | 4.2  | 28        |
| 45 | AÂlife•ycle assessment model for zero emission neighborhoods. Journal of Industrial Ecology, 2020,<br>24, 500-516.                                                                                 | 5.5  | 25        |
| 46 | Recycling potential of secondary phosphorus resources as assessed by integrating substance flow analysis and plant-availability. Science of the Total Environment, 2017, 575, 1546-1555.           | 8.0  | 24        |
| 47 | Performing quantitative analyses towards sustainable business models in building energy renovation projects: Analytic process and case study. Journal of Cleaner Production, 2018, 199, 1092-1106. | 9.3  | 22        |
| 48 | Combining Life Cycle Environmental and Economic Assessments in Building Energy Renovation Projects. Energies, 2017, 10, 1851.                                                                      | 3.1  | 21        |
| 49 | Sustainable Business Models for Deep Energy Retrofitting of Buildings: State-of-the-art and<br>Methodological Approach. Energy Procedia, 2016, 96, 435-445.                                        | 1.8  | 20        |
| 50 | Assessment of Environmental Impacts of an Aging and Stagnating Water Supply Pipeline Network.<br>Journal of Industrial Ecology, 2012, 16, 722-734.                                                 | 5.5  | 19        |
| 51 | Historical analysis of blockages in wastewater pipelines in Oslo and diagnosis of causative pipeline<br>characteristics. Urban Water Journal, 2010, 7, 335-343.                                    | 2.1  | 18        |
| 52 | Analysis of chemicals and energy consumption in water and wastewater treatment, as cost components: Case study of Oslo, Norway. Urban Water Journal, 2011, 8, 189-202.                             | 2.1  | 18        |
| 53 | Redistributing Phosphorus in Animal Manure from a Livestock-Intensive Region to an Arable Region:<br>Exploration of Environmental Consequences. Sustainability, 2017, 9, 595.                      | 3.2  | 18        |
| 54 | A systematic approach for data analysis and prediction methods for annual energy profiles: An<br>example for school buildings in Norway. Energy and Buildings, 2021, 247, 111160.                  | 6.7  | 16        |

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Dynamic-MFA examination of Chilean housing stock: long-term changes and earthquake damage.<br>Building Research and Information, 2014, 42, 343-358.                                                                                                         | 3.9  | 15        |
| 56 | A method to extract fishers' knowledge (FK) to generate evidence for sustainable management of fishing gears. MethodsX, 2019, 6, 1044-1053.                                                                                                                 | 1.6  | 14        |
| 57 | Sustainable management of combustible household waste—Expanding the integrated evaluation<br>model. Resources, Conservation and Recycling, 2008, 52, 1101-1111.                                                                                             | 10.8 | 12        |
| 58 | Importance of investment decisions and rehabilitation approaches in an ageing wastewater pipeline network. A case study of Oslo (Norway). Water Science and Technology, 2008, 58, 2279-2293.                                                                | 2.5  | 12        |
| 59 | Top-down spatially-explicit probabilistic estimation of building energy performance at a scale. Energy and Buildings, 2021, 238, 110786.                                                                                                                    | 6.7  | 12        |
| 60 | Industrial Ecology and Education. Journal of Industrial Ecology, 2001, 5, 1-2.                                                                                                                                                                              | 5.5  | 11        |
| 61 | Systems analysis as support for decision making towards sustainable municipal waste management - a<br>case study. Waste Management and Research, 2006, 24, 323-331.                                                                                         | 3.9  | 11        |
| 62 | Comparing CO2 and NOX emissions from a district heating system with mass-burn waste incineration versus likely alternative solutions – City of Trondheim, 1986–2009. Resources, Conservation and Recycling, 2012, 60, 147-158.                              | 10.8 | 11        |
| 63 | Methodology for determining life-cycle environmental impacts due to material and energy flows in<br>wastewater pipeline networks: A case study of Oslo (Norway). Urban Water Journal, 2011, 8, 119-134.                                                     | 2.1  | 10        |
| 64 | Optimizing Road Gradients Regarding Earthwork Cost, Fuel Cost, and Tank-to-Wheel Emissions.<br>Journal of Transportation Engineering Part A: Systems, 2020, 146, .                                                                                          | 1.4  | 10        |
| 65 | Towards a LCA Database for the Planning and Design of Zero-Emissions Neighborhoods. Buildings, 2022, 12, 512.                                                                                                                                               | 3.1  | 10        |
| 66 | Teaching Industrial Ecology to Graduate Students: Experiences at the Norwegian University of Science<br>and Technology. Journal of Industrial Ecology, 1999, 3, 117-130.                                                                                    | 5.5  | 9         |
| 67 | Dynamic material flow analysis for PCBs in the Norwegian building stock. Building Research and Information, 2014, 42, 359-370.                                                                                                                              | 3.9  | 9         |
| 68 | Environmental analysis of chemicals and energy consumption in water treatment plants: case study of<br>Oslo, Norway. Water Science and Technology: Water Supply, 2012, 12, 200-211.                                                                         | 2.1  | 8         |
| 69 | Typifying cities to streamline the selection of relevant environmental sustainability indicators for<br>urban water supply and sewage handling systems: a recommendation. Environment, Development and<br>Sustainability, 2013, 15, 765-782.                | 5.0  | 8         |
| 70 | CONSIDERATION OF LIFE CYCLE ENERGY USE AND GREENHOUSE GAS EMISSIONS IN ROAD INFRASTRUCTURE<br>PLANNING PROCESSES: EXAMPLES OF SWEDEN, NORWAY, DENMARK AND THE NETHERLANDS. Journal of<br>Environmental Assessment Policy and Management, 2014, 16, 1450038. | 7.9  | 7         |
| 71 | Life cycle assessment of winter road maintenance. International Journal of Life Cycle Assessment, 2020, 25, 646-661.                                                                                                                                        | 4.7  | 7         |
| 72 | Winners of the 2014 Graedel Prizes: The <i>JIE</i> Best Paper Prizes. Journal of Industrial Ecology, 2015, 19, 521-523.                                                                                                                                     | 5.5  | 6         |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Introducing First Winners of the Graedel Prize: The <i>JIE</i> Best Paper Prizes. Journal of Industrial Ecology, 2015, 19, 185-188.                                                                    | 5.5 | 6         |
| 74 | Winners of the 2015 Graedel Prizes: The <i>JIE</i> Best Paper Prizes. Journal of Industrial Ecology, 2016, 20, 1256-1259.                                                                              | 5.5 | 6         |
| 75 | Winners of the 2016 Graedel Prizes: The Journal of Industrial Ecology Best Paper Prizes. Journal of<br>Industrial Ecology, 2017, 21, 1446-1448.                                                        | 5.5 | 6         |
| 76 | Life cycle assessment as decision-support in choice of road corridor: case study and stakeholder perspectives. International Journal of Sustainable Transportation, 2021, 15, 678-695.                 | 4.1 | 5         |
| 77 | Environmental co-benefits and trade-offs of climate mitigation strategies applied to net-zero-emission neighbourhoods. International Journal of Life Cycle Assessment, 2021, 26, 2263-2277.            | 4.7 | 5         |
| 78 | Studying the demand-side vis-Ã-vis the supply-side of urban water systems – case study of Oslo,<br>Norway. Environmental Technology (United Kingdom), 2014, 35, 2322-2333.                             | 2.2 | 4         |
| 79 | Future energy pathways for a university campus considering possibilities for energy efficiency improvements. IOP Conference Series: Earth and Environmental Science, 2019, 352, 012037.                | 0.3 | 3         |
| 80 | The effect of building attributes on the energy performance at a scale: an inferential analysis. Building Research and Information, 0, , 1-19.                                                         | 3.9 | 3         |
| 81 | Hybrid life cycle assessment at the neighbourhood scale: The case of Ydalir, Norway. Cleaner<br>Engineering and Technology, 2022, 8, 100503.                                                           | 4.0 | 3         |
| 82 | Use of LCA to evaluate solutions for water and waste infrastructure in the early planning phase of carbonâ€neutral urban settlements. Smart and Sustainable Built Environment, 2013, 2, 28-42.         | 4.0 | 2         |
| 83 | Analyzing a city's metabolism. , 2014, , .                                                                                                                                                             |     | 2         |
| 84 | Embodied emission profiles of building types: guidance for emission reduction in the early phases of construction projects. IOP Conference Series: Earth and Environmental Science, 2020, 410, 012069. | 0.3 | 1         |
| 85 | Influence of emerging technologies deployment in residential built stock on electric energy cost and grid load. IOP Conference Series: Earth and Environmental Science, 2019, 352, 012038.             | 0.3 | О         |