Jian-Wei Zi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1482675/publications.pdf

Version: 2024-02-01

	218677	223800
2,472	26	46
citations	h-index	g-index
82	82	1367
docs citations	times ranked	citing authors
	2,472 citations 82 docs citations	2,472 26 citations h-index 82 82

#	Article	IF	CITATIONS
1	IN SITU DATING OF HYDROTHERMAL MONAZITE AND IMPLICATIONS FOR THE GEODYNAMIC CONTROLS ON ORE FORMATION IN THE JIAODONG GOLD PROVINCE, EASTERN CHINA. Economic Geology, 2020, 115, 671-685.	3.8	160
2	Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China. Lithos, 2012, 144-145, 145-160.	1.4	145
3	Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW) Tj ETQq1 1	0.784314	rggŢ /Ove <mark>rlo</mark>
4	Deconstructing South China and consequences for reconstructing Nuna and Rodinia. Earth-Science Reviews, 2020, 204, 103169.	9.1	115
5	Late Permian-Triassic magmatic evolution in the Jinshajiang orogenic belt, SW China and implications for orogenic processes following closure of the Paleo-Tethys. Numerische Mathematik, 2013, 313, 81-112.	1.4	112
6	Geochronological and geochemical constraints on the petrogenesis of Middle Paleozoic (Kwangsian) massive granites in the eastern South China Block. Lithos, 2012, 150, 188-208.	1.4	105
7	Contrasting rift and subductionâ€related plagiogranites in the Jinshajiang ophiolitic mélange, southwest China, and implications for the Paleoâ€Tethys. Tectonics, 2012, 31, .	2.8	102
8	Constraining subduction-collision processes of the Paleo-Tethys along the Changning–Menglian Suture: New zircon U-Pb ages and Sr–Nd–Pb–Hf–O isotopes of the Lincang Batholith. Gondwana Research, 2018, 62, 75-92.	6.0	99
9	Paleotethyan subduction process revealed from Triassic blueschists in the Lancang tectonic belt of Southwest China. Tectonophysics, 2015, 662, 95-108.	2.2	92
10	Post-collisional potassic magmatism in the Southern Awulale Mountain, western Tianshan Orogen: Petrogenetic and tectonic implications. Gondwana Research, 2008, 14, 383-394.	6.0	54
11	U-Pb geochronology and geochemistry of the Dashibao Basalts in the Songpan-Ganzi Terrane, SW China, with implications for the age of Emeishan volcanism. Numerische Mathematik, 2010, 310, 1054-1080.	1.4	53
12	In situ U–Pb geochronology of xenotime and monazite from the Abra polymetallic deposit in the Capricorn Orogen, Australia: Dating hydrothermal mineralization and fluid flow in a long-lived crustal structure. Precambrian Research, 2015, 260, 91-112.	2.7	52
13	Using in situ SHRIMP U-Pb Monazite and Xenotime Geochronology to Determine the Age of Orogenic Gold Mineralization: An Example from the Paulsens Mine, Southern Pilbara Craton. Economic Geology, 2017, 112, 1205-1230.	3.8	52
14	Cambrian intra–oceanic arc trondhjemite and tonalite in the Tam Ky–Phuoc Son Suture Zone, central Vietnam: Implications for the early Paleozoic assembly of the Indochina Block. Gondwana Research, 2019, 70, 151-170.	6.0	49
15	Neoarchean and Paleoproterozoic K-rich granites in the Phan Si Pan Complex, north Vietnam: Constraints on the early crustal evolution of the Yangtze Block. Precambrian Research, 2019, 332, 105395.	2.7	42
16	Reexamination of 2.5-Ga "whiff―of oxygen interval points to anoxic ocean before GOE. Science Advances, 2022, 8, eabj7190.	10.3	42
17	Late Triassic post-collisional granites related to Paleotethyan evolution in SE Thailand: Geochronological and geochemical constraints. Lithos, 2017, 286-287, 440-453.	1.4	41
18	Petrogenesis and tectonic implications of Late-Triassic high $\acute{\rm E}>$ Nd(t)- $\acute{\rm E}>$ Hf(t) granites in the Ailaoshan tectonic zone (SW China). Science China Earth Sciences, 2014, 57, 2181-2194.	5.2	40

#	Article	IF	CITATIONS
19	Geodynamics of the Indosinian orogeny between the South China and Indochina blocks: Insights from latest Permian–Triassic granitoids and numerical modeling. Bulletin of the Geological Society of America, 2018, 130, 1289-1306.	3.3	37
20	Geochemistry and petrogenesis of the Permian mafic dykes in the Panxi region, SW China. Gondwana Research, 2008, 14, 368-382.	6.0	35
21	Early Paleoproterozoic magmatism in the Yangtze Block: Evidence from zircon U-Pb ages, Sr-Nd-Hf isotopes and geochemistry of ca. 2.3 Ga and 2.1 Ga granitic rocks in the Phan Si Pan Complex, north Vietnam. Precambrian Research, 2019, 324, 253-268.	2.7	34
22	Petrogenesis of Archean TTGs and potassic granites in the southern Yangtze Block: Constraints on the early formation of the Yangtze Block. Precambrian Research, 2020, 347, 105848.	2.7	34
23	Tracing the provenance of volcanic ash in Permian–Triassic boundary strata, South China: Constraints from inherited and syn-depositional magmatic zircons. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516, 190-202.	2.3	31
24	Reconstructing South China in the Mesoproterozoic and its role in the Nuna and Rodinia supercontinents. Precambrian Research, 2020, 337, 105558.	2.7	31
25	Petrogenesis and tectonic implication of the Late Triassic post-collisional volcanic rocks in Chiang Khong, NW Thailand. Lithos, 2016, 248-251, 418-431.	1.4	30
26	Geochronological and geochemical constraints on the intermediate-acid volcanic rocks along the Chiang Khong–Lampang–Tak igneous zone in NW Thailand and their tectonic implications. Gondwana Research, 2017, 45, 87-99.	6.0	28
27	Ediacaran (~ 600 Ma) orogenic gold in Egypt: age of the Atalla gold mineralization and its geological significance. International Geology Review, 2019, 61, 779-794.	2.1	27
28	Newly identified 1.89†Ga mafic dyke swarm in the Archean Yilgarn Craton, Western Australia suggests a connection with India. Precambrian Research, 2019, 329, 156-169.	2.7	27
29	Sedimentation and magmatism in the Paleoproterozoic Cuddapah Basin, India: Consequences of lithospheric extension. Gondwana Research, 2017, 48, 153-163.	6.0	26
30	Petrogenesis of the Dalongkai ultramafic-mafic intrusion and its tectonic implication for the Paleotethyan evolution along the Ailaoshan tectonic zone (SW China). Journal of Asian Earth Sciences, 2017, 141, 112-124.	2.3	25
31	Texturally Controlled U–Th–Pb Monazite Geochronology Reveals Paleoproterozoic UHT Metamorphic Evolution in the Khondalite Belt, North China Craton. Journal of Petrology, 2020, 61, .	2.8	25
32	A new Paleoproterozoic tectonic history of the eastern Capricorn Orogen, Western Australia, revealed by U–Pb zircon dating of micro-tuffs. Precambrian Research, 2016, 286, 1-19.	2.7	24
33	Monazite trumps zircon: applying SHRIMP U–Pb geochronology to systematically evaluate emplacement ages of leucocratic, low-temperature granites in a complex Precambrian orogen. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	24
34	The Mesoproterozoic Baoban Complex, South China: A missing fragment of western Laurentian lithosphere. Bulletin of the Geological Society of America, 2020, 132, 1404-1418.	3.3	23
35	Extensional episodes in the Paleoproterozoic Capricorn Orogen, Western Australia, revealed by petrogenesis and geochronology of mafic–ultramafic rocks. Precambrian Research, 2018, 306, 22-40.	2.7	22
36	Linking gold mineralization to regional-scale drivers of mineral systemsÂusing in situ U–Pb geochronology and pyrite LA-ICP-MS elementÂmapping. Geoscience Frontiers, 2019, 10, 89-105.	8.4	22

#	Article	IF	CITATIONS
37	Proto-Tethys ophiolitic mélange in SW Yunnan: Constraints from zircon U-Pb geochronology and geochemistry. Geoscience Frontiers, 2021, 12, 101200.	8.4	21
38	Young ores in old rocks: Proterozoic iron mineralisation in Mesoarchean banded iron formation, northern Pilbara Craton, Australia. Ore Geology Reviews, 2017, 89, 40-69.	2.7	20
39	Geochronological and Geochemical Constraints on the Petrogenesis of Early Paleoproterozoic (2.40-2.32 Ga) Nb-Enriched Mafic Rocks in Southwestern Yangtze Block and Its Tectonic Implications. Journal of Earth Science (Wuhan, China), 2020, 31, 35-52.	3.2	20
40	Multiple episodes of hematite mineralization indicated by U-Pb dating of iron-ore deposits, Marquette Range, Michigan, USA. Geology, 2016, 44, 547-550.	4.4	19
41	Zircon U–Pb geochronology, and elemental and Sr–Nd–Hf–O isotopic geochemistry of post-collisional rhyolite in the Chiang Khong area, NW Thailand and implications for the melting of juvenile crust. International Journal of Earth Sciences, 2017, 106, 1375-1389.	1.8	19
42	Using monazite geochronology to test the plume model for carbonatites: The example of Gifford Creek Carbonatite Complex, Australia. Chemical Geology, 2017, 463, 50-60.	3.3	18
43	U-Pb dating of overpressure veins in late Archean shales reveals six episodes of Paleoproterozoic deformation and fluid flow in the Pilbara craton. Geology, 2020, 48, 961-965.	4.4	18
44	1.39â€Ga mafic dyke swarm in southwestern Yilgarn Craton marks Nuna to Rodinia transition in the West Australian Craton. Precambrian Research, 2018, 316, 291-304.	2.7	17
45	U-Pb monazite ages of the Kabanga mafic-ultramafic intrusions and contact aureoles, central Africa: Geochronological and tectonic implications. Bulletin of the Geological Society of America, 2019, 131, 1857-1870.	3.3	17
46	Neighbouring orogenic gold deposits may be the products of unrelated mineralizing events. Ore Geology Reviews, 2018, 95, 593-603.	2.7	16
47	High-Grade Magnetite Mineralization at 1.86 Ga in Neoarchean Banded Iron Formations, Gongchangling, China: In Situ U-Pb Geochronology of Metamorphic-Hydrothermal Zircon and Monazite. Economic Geology, 2019, 114, 1159-1175.	3.8	16
48	UNRAVELING MINERALIZATION AND MULTISTAGE HYDROTHERMAL OVERPRINTING HISTORIES BY INTEGRATED IN SITU U-Pb AND Sm-Nd ISOTOPES IN A PALEOPROTEROZOIC BRECCIA-HOSTED IOCG DEPOSIT, SW CHINA. Economic Geology, 2021, 116, 1687-1710.	3.8	16
49	In situ U-Pb and geochemical evidence for ancient Pb-loss during hydrothermal alteration producing apparent young concordant zircon dates in older tuffs. Geochimica Et Cosmochimica Acta, 2022, 320, 324-338.	3.9	16
50	SHRIMP U–Pb zircon geochronology establishes that banded iron formations are not chronostratigraphic markers across Archean greenstone belts of the Pilbara Craton. Precambrian Research, 2017, 292, 290-304.	2.7	15
51	U-Pb geochronology of monazite in Precambrian tuffs reveals depositional and metamorphic histories. Precambrian Research, 2018, 313, 109-118.	2.7	15
52	Part I: A resource estimation based on mineral system modelling prospectivity approaches and analogical analysis: A case study of the MVT Pb-Zn deposits in Huayuan district, China. Ore Geology Reviews, 2018, 101, 966-984.	2.7	14
53	Tracking Prototethyan assembly felsic magmatic suites in southern Yunnan (SW China): evidence for an Early Ordovician–Early Silurian arc–back-arc system. Journal of the Geological Society, 2021, 178, .	2.1	14
54	U–Pb dating of metamorphic monazite establishes a Pan-African age for tectonism in the Nallamalai Fold Belt, India. Journal of the Geological Society, 2017, 174, 1062-1069.	2.1	13

#	Article	IF	CITATIONS
55	Phase equilibrium modelling and SHRIMP zircon U–Pb dating of medium-pressure pelitic granulites in the Helanshan complex of the Khondalite Belt, North China Craton, and their tectonic implications. Precambrian Research, 2018, 314, 62-75.	2.7	13
56	Reconstructing the Lancang Terrane (SW Yunnan) and implications for early Paleozoic Proto-Tethys evolution at the northern margin of Gondwana. Gondwana Research, 2022, 101, 278-294.	6.0	12
57	In situ U-Pb geochronology and geochemistry of a 1.13†Ga mafic dyke suite at Bunger Hills, East Antarctica: The end of the Albany-Fraser Orogeny. Precambrian Research, 2018, 310, 76-92.	2.7	11
58	Pyroxene 40 Ar/ 39 Ar Dating of Basalt and Applications to Large Igneous Provinces and Precambrian Stratigraphic Correlations. Journal of Geophysical Research: Solid Earth, 2019, 124, 8313-8330.	3.4	11
59	The evolution of a Precambrian arc-related granulite facies gold deposit: Evidence from the Glenburgh deposit, Western Australia. Precambrian Research, 2017, 290, 63-85.	2.7	10
60	Timing of two separate granulite-facies metamorphic events in the Helanshan complex, North China Craton: Constraints from monazite and zircon U–Pb dating of pelitic granulites. Lithos, 2019, 350-351, 105216.	1.4	10
61	U-Pb evidence for a 2.15 Ga orogenic event in the Archean Kaapvaal (South Africa) and Pilbara (Western) Tj ETQq	1 1 0.7843	314 rgBT /0
62	4D history of the Nimbus VHMS ore deposit in the Yilgarn Craton, Western Australia. Precambrian Research, 2020, 337, 105536.	2.7	10
63	Zircon U-Pb geochronology of the Cenozoic granitic mylonite along the Ailaoshan-Red river shear zone: New constraints on the timing of the sinistral shearing. Journal of Earth Science (Wuhan,) Tj ETQq1 1 0.784	3 3.4 rgBT /	'Overlock 1
64	First evidence of Archean mafic dykes at 2.62†Ga in the Yilgarn Craton, Western Australia: Links to cratonisation and the Zimbabwe Craton. Precambrian Research, 2018, 317, 1-13.	2.7	9
65	Establishing the P-T path of UHT granulites by geochemically distinguishing peritectic from retrograde garnet. American Mineralogist, 2021, 106, 1640-1653.	1.9	9
66	The link between an anorthosite complex and underlying olivine–Ti-magnetite-rich layered intrusion in Damiao, China: insights into magma chamber processes in the formation of Proterozoic massif-type anorthosites. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	7
67	A 1.25 Ga depositional age for the "Paleoproterozoic―Mapedi red beds, Kalahari manganese field, South Africa: New constraints on the timing of oxidative weathering and hematite mineralization. Geology, 2020, 48, 44-48.	4.4	6
68	The 4D evolution of the Teutonic Bore Camp VHMS deposits, Yilgarn Craton, Western Australia. Ore Geology Reviews, 2020, 120, 103448.	2.7	6
69	Refining the Paleoproterozoic tectonothermal history of the Penokean Orogen: New U-Pb age constraints from the Pembine-Wausau terrane, Wisconsin, USA. Bulletin of the Geological Society of America, 2022, 134, 776-790.	3.3	6
70	Precise ages of gold mineralization and pre-gold hydrothermal activity in the Baiyun gold deposit, northeastern China: in situ U–Pb dating of hydrothermal xenotime and rutile. Mineralium Deposita, 2022, 57, 1001-1022.	4.1	6
71	Using In Situ Monazite and Xenotime U-Pb Geochronology to Resolve the Fate of the "Missing―Banded Iron Formation-Hosted High-Grade Hematite Ores of the North China Craton. Economic Geology, 2020, 115, 189-204.	3.8	5
72	The 1320 Ma intracontinental Wongawobbin Basin, Pilbara, Western Australia: A far-field response to Albany–Fraser–Musgrave tectonics. Precambrian Research, 2016, 285, 58-79.	2.7	4

#	Article	IF	CITATIONS
73	The Mangaroon Orogeny: Synchronous c. 1.7†Ga magmatism and low-P, high-T metamorphism in the West Australian Craton. Precambrian Research, 2019, 333, 105425.	2.7	4
74	Role of fluids in Fe–Ti–P mineralization of the Proterozoic Damiao anorthosite complex, China: Insights from baddeleyite–zircon relationships in ore and altered anorthosite. Ore Geology Reviews, 2019, 115, 103186.	2.7	4
75	SHRIMP U–Pb phosphate dating shows metamorphism was synchronous with magmatism during the Paleoproterozoic Capricorn Orogeny. Australian Journal of Earth Sciences, 2019, 66, 973-990.	1.0	3
76	Age of the Archaean Murchison Belt and mineralisation, South Africa. South African Journal of Geology, $0, , .$	1.2	3
77	Gold metallogeny of the northern Capricorn Orogen: The relationship between crustal architecture, fault reactivation and hydrothermal fluid flow. Ore Geology Reviews, 2020, 122, 103515.	2.7	3
78	ç<¬å±çŸ³æ^å›çŸ¿ç‰©å¦ç‰¹å¾åŠå¶å⁻¹U-Th-Pb年龄解释的å^¶çº¦. Diqiu Kexue - Zhongguo Dizhi Daxı Geosciences, 2022, 47, 1383.	ue Xuebac	o/Earth Science
79	Eocene animal trace fossils in 1.7-billion-year-old metaquartzites. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2105707118.	7.1	2