James F Ponder Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1481961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Materials in Organic Electrochemical Transistors for Bioelectronic Applications: Past, Present, and Future. Advanced Functional Materials, 2019, 29, 1807033.	7.8	128
2	Balancing Charge Storage and Mobility in an Oligo(Ether) Functionalized Dioxythiophene Copolymer for Organic―and Aqueous―Based Electrochemical Devices and Transistors. Advanced Materials, 2018, 30, e1804647.	11.1	119
3	Ethylene Glycol-Based Side Chain Length Engineering in Polythiophenes and its Impact on Organic Electrochemical Transistor Performance. Chemistry of Materials, 2020, 32, 6618-6628.	3.2	92
4	Conjugated Polyelectrolytes as Water Processable Precursors to Aqueous Compatible Redox Active Polymers for Diverse Applications: Electrochromism, Charge Storage, and Biocompatible Organic Electronics. Chemistry of Materials, 2017, 29, 4385-4392.	3.2	78
5	Designing a Soluble PEDOT Analogue without Surfactants or Dispersants. Macromolecules, 2016, 49, 2106-2111.	2.2	74
6	Electrically Controlled Plasmonic Behavior of Gold Nanocube@Polyaniline Nanostructures: Transparent Plasmonic Aggregates. Chemistry of Materials, 2016, 28, 2868-2881.	3.2	67
7	Solution Processed PEDOT Analogues in Electrochemical Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 13492-13498.	4.0	65
8	Disentangling Redox Properties and Capacitance in Solution-Processed Conjugated Polymers. Chemistry of Materials, 2019, 31, 2971-2982.	3.2	50
9	Dual-Responsive Reversible Plasmonic Behavior of Core–Shell Nanostructures with pH-Sensitive and Electroactive Polymer Shells. Chemistry of Materials, 2016, 28, 7551-7563.	3.2	48
10	Conductive, Solutionâ€₽rocessed Dioxythiophene Copolymers for Thermoelectric and Transparent Electrode Applications. Advanced Energy Materials, 2019, 9, 1900395.	10.2	43
11	Significant Enhancement of the Electrical Conductivity of Conjugated Polymers by Post-Processing Side Chain Removal. Journal of the American Chemical Society, 2022, 144, 1351-1360.	6.6	42
12	Flexible, aqueous-electrolyte supercapacitors based on water-processable dioxythiophene polymer/carbon nanotube textile electrodes. Journal of Materials Chemistry A, 2017, 5, 23887-23897.	5.2	40
13	Design of Hybrid Electrochromic Materials with Large Electrical Modulation of Plasmonic Resonances. ACS Applied Materials & amp; Interfaces, 2016, 8, 13064-13075.	4.0	37
14	Controlling Electrochemically Induced Volume Changes in Conjugated Polymers by Chemical Design: from Theory to Devices. Advanced Functional Materials, 2021, 31, 2100723.	7.8	35
15	Electrophilic chemistry of propargylic alcohols in imidazolium ionic liquids: Propargylation of arenes and synthesis of propargylic ethers catalyzed by metallic triflates [Bi(OTf)3, Sc(OTf)3, Yb(OTf)3], TfOH, or B(C6F5)3. Organic and Biomolecular Chemistry, 2011, 9, 2518.	1.5	34
16	An Electroactive Oligoâ€EDOT Platform for Neural Tissue Engineering. Advanced Functional Materials, 2020, 30, 2003710.	7.8	32
17	Effects of linear and branched side chains on the redox and optoelectronic properties of 3,4-dialkoxythiophene polymers. Polymer Chemistry, 2020, 11, 2173-2181.	1.9	24
18	Soluble phenylenedioxythiophene copolymers <i>via</i> direct (hetero)arylation polymerization: a revived monomer for organic electronics. Journal of Materials Chemistry C, 2018, 6, 1064-1070.	2.7	22

James F Ponder Jr

#	Article	IF	CITATIONS
19	Structural effects on the charge transport properties of chemically and electrochemically doped dioxythiophene polymers. Journal of Materials Chemistry C, 2020, 8, 683-693.	2.7	22
20	Heteroatom Role in Polymeric Dioxyselenophene/Dioxythiophene Systems for Color and Redox Control. ACS Macro Letters, 2016, 5, 714-717.	2.3	20
21	Probing Comonomer Selection Effects on Dioxythiophene-Based Aqueous-Compatible Polymers for Redox Applications. Chemistry of Materials, 2022, 34, 4633-4645.	3.2	20
22	Low-Defect, High Molecular Weight Indacenodithiophene (IDT) Polymers Via a C–H Activation: Evaluation of a Simpler and Greener Approach to Organic Electronic Materials. , 2021, 3, 1503-1512.		19
23	Tuning Conjugated Polymers for Binder Applications in High-Capacity Magnetite Anodes. ACS Applied Energy Materials, 2019, 2, 7584-7593.	2.5	18
24	Inducing planarity in redox-active conjugated polymers with solubilizing 3,6-dialkoxy-thieno[3,2-b]thiophenes (DOTTs) for redox and solid-state conductivity applications. Journal of Materials Chemistry C, 2020, 8, 7463-7475.	2.7	17
25	Electrochromic tuning of transparent gold nanorods with poly[(3,4-propylenedioxy)pyrrole] shells in the near-infrared region. Journal of Materials Chemistry C, 2017, 5, 12571-12584.	2.7	15
26	Multifunctional triphenylamine polymers synthesized <i>via</i> direct (hetero) arylation polymerization. Journal of Polymer Science Part A, 2018, 56, 147-153.	2.5	13
27	Highly selective chromoionophores for ratiometric Na+ sensing based on an oligoethyleneglycol bridged bithiophene detection unit. Journal of Materials Chemistry C, 2019, 7, 5359-5365.	2.7	13
28	Thermoelectric and Charge Transport Properties of Solution-Processable and Chemically Doped Dioxythienothiophene Copolymers. ACS Applied Polymer Materials, 2021, 3, 2316-2324.	2.0	12
29	Heterogeneous forward and backward scattering modulation by polymer-infused plasmonic nanohole arrays. Journal of Materials Chemistry C, 2019, 7, 3090-3099.	2.7	8
30	Iron(III) Dopant Counterions Affect the Charge-Transport Properties of Poly(Thiophene) and Poly(Dialkoxythiophene) Derivatives. ACS Applied Materials & Interfaces, 2022, 14, 29039-29051.	4.0	5
31	CONDUCTING POLYMERS: REDOX STATES IN CONJUGATED SYSTEMS. Materials and Energy, 2016, , 1-18.	2.5	3