
Matthew E Gegg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1481903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
2	Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Human Molecular Genetics, 2010, 19, 4861-4870.	1.4	795
3	Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Annals of Neurology, 2012, 72, 455-463.	2.8	473
4	Mitochondria and Quality Control Defects in a Mouse Model of Gaucher Disease—Links to Parkinson's Disease. Cell Metabolism, 2013, 17, 941-953.	7.2	277
5	Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain, 2014, 137, 1481-1495.	3.7	258
6	Mitochondrial and lysosomal biogenesis are activated following <scp>PINK</scp> 1/parkinâ€mediated mitophagy. Journal of Neurochemistry, 2016, 136, 388-402.	2.1	184
7	Silencing of PINK1 Expression Affects Mitochondrial DNA and Oxidative Phosphorylation in DOPAMINERGIC Cells. PLoS ONE, 2009, 4, e4756.	1.1	173
8	Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease. Human Molecular Genetics, 2016, 25, 3432-3445.	1.4	171
9	Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration?. Journal of Neurochemistry, 2004, 86, 228-237.	2.1	145
10	Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Scientific Reports, 2016, 6, 31380.	1.6	133
11	No evidence for substrate accumulation in Parkinson brains with <i>GBA</i> mutations. Movement Disorders, 2015, 30, 1085-1089.	2.2	121
12	A <i>Drosophila</i> Model of Neuronopathic Gaucher Disease Demonstrates Lysosomal-Autophagic Defects and Altered mTOR Signalling and Is Functionally Rescued by Rapamycin. Journal of Neuroscience, 2016, 36, 11654-11670.	1.7	117
13	Glucocerebrosidase 1 deficient <i>Danio rerio</i> mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death. Human Molecular Genetics, 2015, 24, 6640-6652.	1.4	108
14	The role of glucocerebrosidase in Parkinson disease pathogenesis. FEBS Journal, 2018, 285, 3591-3603.	2.2	99
15	Mitochondrial Contribution to Parkinson's Disease Pathogenesis. Parkinson's Disease, 2011, 2011, 1-7.	0.6	95
16	Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology. Experimental Neurology, 2009, 219, 266-273.	2.0	93
17	Bioenergetic Consequences of PINK1 Mutations in Parkinson Disease. PLoS ONE, 2011, 6, e25622.	1.1	88
18	Mitochondrial dysfunction associated with glucocerebrosidase deficiency. Neurobiology of Disease, 2016, 90, 43-50.	2.1	79

2

MATTHEW E GEGG

#	Article	IF	CITATIONS
19	PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2: Implications for Parkinson disease pathogenesis. Autophagy, 2011, 7, 243-245.	4.3	75
20	Effects of ambroxol on the autophagy-lysosome pathway and mitochondria in primary cortical neurons. Scientific Reports, 2018, 8, 1385.	1.6	74
21	ICAM-1–mediated Endothelial Nitric Oxide Synthase Activation via Calcium and AMP-activated Protein Kinase Is Required for Transendothelial Lymphocyte Migration. Molecular Biology of the Cell, 2009, 20, 995-1005.	0.9	73
22	Endoplasmic reticulum and lysosomal Ca2+ stores are remodelled in GBA1-linked Parkinson disease patient fibroblasts. Cell Calcium, 2016, 59, 12-20.	1.1	71
23	Suppression of Autoimmune Retinal Disease by Lovastatin Does Not Require Th2 Cytokine Induction. Journal of Immunology, 2005, 174, 2327-2335.	0.4	66
24	Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity. Brain Research, 2005, 1036, 1-6.	1.1	60
25	Glucocerebrosidase in the pathogenesis and treatment of Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3214-3215.	3.3	54
26	Preservation of extracellular glutathione by an astrocyte derived factor with properties comparable to extracellular superoxide dismutase. Journal of Neurochemistry, 2002, 83, 984-991.	2.1	49
27	Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiology of Disease, 2014, 62, 426-440.	2.1	49
28	Evidence for DNA fragmentation in the CNS of aged Fischer-344 rats. NeuroReport, 1996, 7, 977-980.	0.6	44
29	Glucocerebrosidase activity, cathepsin D and monomeric α-synuclein interactions in a stem cell derived neuronal model of a PD associated GBA1 mutation. Neurobiology of Disease, 2020, 134, 104620.	2.1	42
30	Glucocerebrosidase deficiency promotes release of α-synuclein fibrils from cultured neurons. Human Molecular Genetics, 2020, 29, 1716-1728.	1.4	35
31	Glucocerebrosidase-associated Parkinson disease: Pathogenic mechanisms and potential drug treatments. Neurobiology of Disease, 2022, 166, 105663.	2.1	34
32	Determination of Glutamate-Cysteine Ligase (γ-Glutamylcysteine Synthetase) Activity by High-Performance Liquid Chromatography and Electrochemical Detection. Analytical Biochemistry, 2002, 304, 26-32.	1.1	29
33	DJ-1 is a redox sensitive adapter protein for high molecular weight complexes involved in regulation of catecholamine homeostasis. Human Molecular Genetics, 2017, 26, 4028-4041.	1.4	19
34	Ablation of the pro-inflammatory master regulator miR-155 does not mitigate neuroinflammation or neurodegeneration in a vertebrate model of Gaucher's disease. Neurobiology of Disease, 2019, 127, 563-569.	2.1	19
35	GBA mutation promotes early mitochondrial dysfunction in 3D neurosphere models. Aging, 2019, 11, 10338-10355.	1.4	15
36	Nerve Growth Factor, Central Nervous System Apoptosis, and Adrenocortical Activity in Aged Fischer-344/Brown Norway F1 Hybrid Rats. Brain Research Bulletin, 1997, 43, 229-233.	1.4	10

MATTHEW E GEGG

#	Article	IF	CITATIONS
37	Ambroxol reverses tau and α-synuclein accumulation in a cholinergic N370S <i>GBA1</i> mutation model. Human Molecular Genetics, 2022, 31, 2396-2405.	1.4	10
38	Oxidative phosphorylation: Structure, function, and intermediary metabolism. International Review of Neurobiology, 2002, 53, 25-56.	0.9	8
39	The role of DJ-1 complexes and catecholamine metabolism: relevance for familial and idiopathic Parkinson's disease. Neural Regeneration Research, 2018, 13, 815.	1.6	8
40	Mitochondria: Key Organelle in Parkinson's Disease. Parkinson's Disease, 2016, 2016, 1-2.	0.6	3
41	Ubiquitination of Mitofusins in PINK1/Parkin-Mediated Mitophagy. , 2014, , 189-199.		0
42	Interaction Between Mitochondria and Autophagy. Current Topics in Neurotoxicity, 2015, , 41-61.	0.4	0