Mikiko Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1481800/publications.pdf Version: 2024-02-01

Μικικό Τλνιλκλ

#	Article	IF	CITATIONS
1	Environmental Oxygen is a Key Modulator of Development and Evolution: From Molecules to Ecology. BioEssays, 2020, 42, 2000025.	2.5	8
2	Regulation of the limb shape during the development of the Chinese softshell turtles. Evolution & Development, 2020, 22, 451-462.	2.0	7
3	Phenotypic plasticity in the mandibular morphology of Japanese macaques: captive–wild comparison. Royal Society Open Science, 2019, 6, 181382.	2.4	16
4	Ecology, Evolution and Development. Development Growth and Differentiation, 2019, 61, 3-4.	1.5	0
5	Environmental Oxygen Exposure Allows for the Evolution of Interdigital Cell Death in Limb Patterning. Developmental Cell, 2019, 50, 155-166.e4.	7.0	13
6	Evolution of the avian digital pattern. Scientific Reports, 2019, 9, 8560.	3.3	8
7	Cux2 refines the forelimb field by controlling expression of <i>Raldh2</i> and <i>Hox</i> genes. Biology Open, 2019, 8, .	1.2	6
8	Involvement of HGF/MET signaling in appendicular muscle development in cartilaginous fish. Development Growth and Differentiation, 2019, 61, 97-103.	1.5	7
9	Localization of Î ² -Catenin and Islet in the Pelvic Fin Field in Zebrafish. Zoological Science, 2019, 36, 365.	0.7	0
10	Alterations in anterior–posterior patterning and its accompanying changes along the proximalâ€distal axis during the finâ€ŧoâ€ŧimb transition. Genesis, 2018, 56, e23053.	1.6	4
11	Modification of pectoral fins occurs during the larva-to-juvenile transition in the mudskipper (Periophthalmus modestus). Zoological Letters, 2018, 4, 23.	1.3	9
12	Expression patterns of <i>Sema3A</i> in developing amniote limbs: With reference to the diversification of peripheral nerve innervation. Development Growth and Differentiation, 2017, 59, 270-285.	1.5	4
13	Migratory appendicular muscles precursor cells in the common ancestor to all vertebrates. Nature Ecology and Evolution, 2017, 1, 1731-1736.	7.8	21
14	Transgene Introduction into the Chick Limb Bud by Electroporation. Methods in Molecular Biology, 2017, 1650, 203-208.	0.9	1
15	Developmental Mechanism of Limb Field Specification along the Anterior–Posterior Axis during Vertebrate Evolution. Journal of Developmental Biology, 2016, 4, 18.	1.7	16
16	PICCORO. Methods in Cell Biology, 2016, 135, 289-295.	1.1	4
17	The fin-to-limb transition as the re-organization of a Turing pattern. Nature Communications, 2016, 7, 11582.	12.8	80
18	Fins into limbs: Autopod acquisition and anterior elements reduction by modifying gene networks involving 5'Hox , Cli3 , and Shh. Developmental Biology, 2016, 413, 1-7.	2.0	33

Μικικό Τάνακα

#	Article	IF	CITATIONS
19	Anterior migration of lateral plate mesodermal cells during embryogenesis of the pufferfish <i><scp>T</scp>akifugu niphobles</i> : insight into the rostral positioning of pelvic fins. Journal of Anatomy, 2015, 227, 81-88.	1.5	6
20	A shift in anterior–posterior positional information underlies the fin-to-limb evolution. ELife, 2015, 4,	6.0	46
21	Development of the lateral plate mesoderm in medaka <i><scp>O</scp>ryzias latipes</i> and Nile tilapia <i><scp>O</scp>reochromis niloticus</i> : insight into the diversification of pelvic fin position. Journal of Anatomy, 2014, 225, 659-674.	1.5	7
22	Dimeric combinations of MafB, cFos and cJun control the apoptosis-survival balance in limb morphogenesis. Development (Cambridge), 2014, 141, 2885-2894.	2.5	27
23	Molecular and evolutionary basis of limb field specification and limb initiation. Development Growth and Differentiation, 2013, 55, 149-163.	1.5	33
24	Blue Light-Mediated Manipulation of Transcription Factor Activity <i>In Vivo</i> . ACS Chemical Biology, 2013, 8, 2649-2653.	3.4	26
25	Acquisition of the paired fins: a view from the sequential evolution of the lateral plate mesoderm. Evolution & Development, 2012, 14, 412-420.	2.0	16
26	Evolution of motor innervation to vertebrate fins and limbs. Developmental Biology, 2011, 355, 164-172.	2.0	24
27	Photoporation of Biomolecules into Single Cells in Living Vertebrate Embryos Induced by a Femtosecond Laser Amplifier. PLoS ONE, 2011, 6, e27677.	2.5	31
28	Revealing the mechanisms of the rostral shift of pelvic fins among teleost fishes. Evolution & Development, 2011, 13, 382-390.	2.0	13
29	Development and evolution of the lateral plate mesoderm: Comparative analysis of amphioxus and lamprey with implications for the acquisition of paired fins. Developmental Biology, 2011, 359, 124-136.	2.0	57
30	Mechanisms of heart development in the Japanese lamprey, <i>Lethenteron japonicum</i> . Evolution & Development, 2010, 12, 34-44.	2.0	38
31	Allometric growth of the trunk leads to the rostral shift of the pelvic fin in teleost fishes. Developmental Biology, 2010, 347, 236-245.	2.0	33
32	Heterochronic Shift in Hox-Mediated Activation of Sonic hedgehog Leads to Morphological Changes during Fin Development. PLoS ONE, 2009, 4, e5121.	2.5	53
33	Mechanism of development of ionocytes rich in vacuolar-type H+-ATPase in the skin of zebrafish larvae. Developmental Biology, 2009, 329, 116-129.	2.0	69
34	Identification of four <i>Engrailed</i> genes in the Japanese lamprey, <i>Lethenteron japonicum</i> . Developmental Dynamics, 2008, 237, 1581-1589.	1.8	33
35	Early Palaeozoic dentine and patterned scales in the embryonic catshark tail. Biology Letters, 2008, 4, 87-90.	2.3	19
36	Possible involvement of SINEs in mammalian-specific brain formation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4220-4225.	7.1	177

Μικικό Τάνακα

#	Article	IF	CITATIONS
37	Identification and developmental expression of two Tbx1/10-related genes in the agnathan Lethenteron japonicum. Development Genes and Evolution, 2007, 217, 691-697.	0.9	19
38	The chicken <i>talpid³</i> gene encodesa novel protein essentialfor Hedgehog signaling. Genes and Development, 2006, 20, 1365-1377.	5.9	112
39	Establishment of the Vertebrate Body Plan in Relation to Limb Formation. Zoological Science, 2005, 22, 1371-1371.	0.7	1
40	Developmental genetic basis for the evolution of pelvic fin loss in the pufferfish Takifugu rubripes. Developmental Biology, 2005, 281, 227-239.	2.0	69
41	Tbx18 and boundary formation in chick somite and wing development. Developmental Biology, 2004, 268, 470-480.	2.0	49
42	Expression of limb initiation genes and clues to the morphological diversification of threespine stickleback. Current Biology, 2003, 13, R951-R952.	3.9	62
43	Fin development in a cartilaginous fish and the origin of vertebrate limbs. Nature, 2002, 416, 527-531.	27.8	113
44	Fibroblast growth factor-induced gene expression and cartilage pattern formation in chick limb bud recombinants. Development Growth and Differentiation, 2001, 43, 165-175.	1.5	5
45	Apical ectodermal ridge induction by the transplantation of En-1-overexpressing ectoderm in chick limb bud. Development Growth and Differentiation, 1998, 40, 423-429.	1.5	17
46	Induction of Additional Limb at the Dorsal–Ventral Boundary of a Chick Embryo. Developmental Biology, 1997, 182, 191-203.	2.0	29
47	Citral, an Inhibitor of Retinoic Acid Synthesis, Modifies Chick Limb Development. Developmental Biology, 1996, 175, 239-247	2.0	39