Michael D Kulis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1481736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bringing the Next Generation of Food Allergy Diagnostics Into the Clinic. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1-9.	2.0	28
2	A "LEAP―forward in understanding immune mechanisms of oral tolerance to peanut. Journal of Allergy and Clinical Immunology, 2022, , .	1.5	1
3	Kinetics of basophil hyporesponsiveness during short-course peanut oral immunotherapy. Journal of Allergy and Clinical Immunology, 2022, 150, 1144-1153.	1.5	3
4	Timing of exposure to environmental adjuvants is critical to mitigate peanut allergy. Journal of Allergy and Clinical Immunology, 2021, 147, 387-390.e4.	1.5	12
5	Irradiated Tree Nut Flours for Use in Oral Immunotherapy. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 321-327.	2.0	1
6	Mechanisms of oral immunotherapy. Clinical and Experimental Allergy, 2021, 51, 527-535.	1.4	38
7	The airway as a route of sensitization to peanut: An update to the dual allergen exposure hypothesis. Journal of Allergy and Clinical Immunology, 2021, 148, 689-693.	1.5	36
8	Mouse Models of Food Allergy in the Pursuit of Novel Treatment Modalities. Frontiers in Allergy, 2021, 2, 810067.	1.2	11
9	Evolution of Immune Responses in Food Immunotherapy. Immunology and Allergy Clinics of North America, 2020, 40, 87-95.	0.7	16
10	Peanut applied to the skin of nonhuman primates induces antigenâ€specific IgG but not IgE. Immunity, Inflammation and Disease, 2020, 8, 211-215.	1.3	5
11	Fecal IgA, Antigen Absorption, and Gut Microbiome Composition Are Associated With Food Antigen Sensitization in Genetically Susceptible Mice. Frontiers in Immunology, 2020, 11, 599637.	2.2	20
12	Model of Walnut Allergy in CC027/GeniUnc Mice Recapitulates Key Features of Human Disease. Yale Journal of Biology and Medicine, 2020, 93, 669-673.	0.2	0
13	High―and lowâ€dose oral immunotherapy similarly suppress proâ€allergic cytokines and basophil activation in young children. Clinical and Experimental Allergy, 2019, 49, 180-189.	1.4	45
14	lgE binding to linear epitopes of Ara h 2 in peanut allergic preschool children undergoing oral Immunotherapy. Pediatric Allergy and Immunology, 2019, 30, 817-823.	1.1	28
15	Plant cell-made protein antigens for induction of Oral tolerance. Biotechnology Advances, 2019, 37, 107413.	6.0	44
16	Indoor dust acts as an adjuvant to promote sensitization to peanut through the airway. Clinical and Experimental Allergy, 2019, 49, 1500-1511.	1.4	31
17	Long-term sublingual immunotherapy for peanut allergy in children: Clinical and immunologic evidence of desensitization. Journal of Allergy and Clinical Immunology, 2019, 144, 1320-1326.e1.	1.5	90
18	A Novel Allergen-Specific Immune Signature-Directed Approach to Dietary Elimination in Eosinophilic Esophagitis. Clinical and Translational Gastroenterology, 2019, 10, e00099.	1.3	27

MICHAEL D KULIS

#	Article	IF	CITATIONS
19	Biomarkers in Food Allergy Immunotherapy. Current Allergy and Asthma Reports, 2019, 19, 61.	2.4	22
20	Genetic diversity between mouse strains allows identification of the CC027/GeniUnc strain as an orally reactive model of peanut allergy. Journal of Allergy and Clinical Immunology, 2019, 143, 1027-1037.e7.	1.5	40
21	Blocking antibodies induced by peanut oral and sublingual immunotherapy suppress basophil activation and are associated with sustained unresponsiveness. Clinical and Experimental Allergy, 2019, 49, 461-470.	1.4	32
22	Immune mechanisms of oral immunotherapy. Journal of Allergy and Clinical Immunology, 2018, 141, 491-498.	1.5	58
23	Tree nut allergies: Allergen homology, crossâ€reactivity, and implications for therapy. Clinical and Experimental Allergy, 2018, 48, 762-772.	1.4	64
24	Specific allergen profiles of peanut foods and diagnostic or therapeutic allergenic products. Journal of Allergy and Clinical Immunology, 2018, 141, 626-631.e7.	1.5	42
25	Effect of endotoxin and alum adjuvant vaccine on peanut allergy. Journal of Allergy and Clinical Immunology, 2018, 141, 791-794.e8.	1.5	6
26	Adjuvanted Immunotherapy Approaches for Peanut Allergy. Frontiers in Immunology, 2018, 9, 2156.	2.2	10
27	A Mouse Model of Peanut Allergy Induced by Sensitization Through the Gastrointestinal Tract. Methods in Molecular Biology, 2018, 1799, 39-47.	0.4	12
28	Preparation and Analysis of Peanut Flour Used in Oral Immunotherapy Clinical Trials. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 1098-1104.	2.0	23
29	Human CD22 Inhibits Murine B Cell Receptor Activation in a Human CD22 Transgenic Mouse Model. Journal of Immunology, 2017, 199, 3116-3128.	0.4	37
30	Early oral immunotherapy in peanut-allergic preschool children is safe and highly effective. Journal of Allergy and Clinical Immunology, 2017, 139, 173-181.e8.	1.5	299
31	The Seed Biotinylated Protein of Soybean (<i>Glycine max</i>): A Boiling-Resistant New Allergen (Gly m) Tj ETQq1 Chemistry, 2016, 64, 3890-3900.	1 0.78431 2.4	14 rgBT /Ov 29
32	Component-resolved analysis of IgA, IgE, and IgG4 during egg OIT identifies markers associated with sustained unresponsiveness. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 1552-1560.	2.7	84
33	Utility of component analyses in subjects undergoing sublingual immunotherapy for peanut allergy. Clinical and Experimental Allergy, 2016, 46, 347-353.	1.4	22
34	Effects of a pre-existing food allergy on the oral introduction of food proteins: findings from a murine model. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 120-123.	2.7	8
35	Basophil Hyporesponsiveness Following Six Months of Peanut Oral Immunotherapy (OIT) Is Associated with Suppression of Syk Phosphorylation. Journal of Allergy and Clinical Immunology, 2015, 135, AB24.	1.5	2
36	Modified peanut oral immunotherapy protocol safely and effectively induces desensitization. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 433-435.e3.	2.0	23

MICHAEL D KULIS

#	Article	IF	CITATIONS
37	Carrying peptides towards the ideal allergenâ€specific immunotherapy. Clinical and Experimental Allergy, 2014, 44, 157-159.	1.4	0
38	Sustained unresponsiveness to peanut in subjects who have completed peanut oral immunotherapy. Journal of Allergy and Clinical Immunology, 2014, 133, 468-475.e6.	1.5	375
39	Sublingual versus oral immunotherapy for peanut-allergic children: A retrospective comparison. Journal of Allergy and Clinical Immunology, 2013, 132, 476-478.e2.	1.5	86
40	Peanut oral immunotherapy modifies IgE and IgG4 responses to major peanut allergens. Journal of Allergy and Clinical Immunology, 2013, 131, 128-134.e3.	1.5	171
41	Allergenic Properties of Enzymatically Hydrolyzed Peanut Flour Extracts. International Archives of Allergy and Immunology, 2013, 162, 123-130.	0.9	37
42	Increased peanut-specific IgA levels in saliva correlate with food challenge outcomes after peanut sublingual immunotherapy. Journal of Allergy and Clinical Immunology, 2012, 129, 1159-1162.	1.5	89
43	The 2S albumin allergens of <i>Arachis hypogaea</i> , Ara h 2 and Ara h 6, are the major elicitors of anaphylaxis and can effectively desensitize peanutâ€allergic mice. Clinical and Experimental Allergy, 2012, 42, 326-336.	1.4	67
44	Evidence of pathwayâ€specific basophil anergy induced by peanut oral immunotherapy in peanutâ€allergic children. Clinical and Experimental Allergy, 2012, 42, 1197-1205.	1.4	101
45	Sublingual immunotherapy for peanut allergy: Clinical and immunologic evidence of desensitization. Journal of Allergy and Clinical Immunology, 2011, 127, 640-646.e1.	1.5	324
46	In vivo and T Cell Cross-Reactivity between Walnut, Cashew and Peanut. International Archives of Allergy and Immunology, 2009, 148, 109-117.	0.9	32