
Giovanni Maga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1481441/publications.pdf Version: 2024-02-01

CIOVANNI ΜΑCA

#	Article	IF	CITATIONS
1	Towards Innovative Antibacterial Correctors for Cystic Fibrosis Targeting the Lung Microbiome with a Multifunctional Effect. ChemMedChem, 2022, 17, .	1.6	2
2	A Role for Human DNA Polymerase λ in Alternative Lengthening of Telomeres. International Journal of Molecular Sciences, 2021, 22, 2365.	1.8	3
3	High Flexibility of RNaseH2 Catalytic Activity with Respect to Non-Canonical DNA Structures. International Journal of Molecular Sciences, 2021, 22, 5201.	1.8	1
4	Bithiazole Inhibitors of Phosphatidylinositol 4â€Kinase (PI4KIIIβ) as Broadâ€ S pectrum Antivirals Blocking the Replication of SARS oVâ€2, Zika Virus, and Human Rhinoviruses. ChemMedChem, 2021, 16, 3548-3552.	1.6	13
5	System-oriented optimization of multi-target 2,6-diaminopurine derivatives: Easily accessible broad-spectrum antivirals active against flaviviruses, influenza virus and SARS-CoV-2. European Journal of Medicinal Chemistry, 2021, 224, 113683.	2.6	9
6	Targeting DDX3X Helicase Activity with BA103 Shows Promising Therapeutic Effects in Preclinical Glioblastoma Models. Cancers, 2021, 13, 5569.	1.7	6
7	New indolylarylsulfone non-nucleoside reverse transcriptase inhibitors show low nanomolar inhibition of single and double HIV-1 mutant strains. European Journal of Medicinal Chemistry, 2020, 208, 112696.	2.6	10
8	Unique Domain for a Unique Target: Selective Inhibitors of Host Cell DDX3X to Fight Emerging Viruses. Journal of Medicinal Chemistry, 2020, 63, 9876-9887.	2.9	7
9	Novel Insights into the Biochemical Mechanism of CK1ε and its Functional Interplay with DDX3X. International Journal of Molecular Sciences, 2020, 21, 6449.	1.8	1
10	Host DDX Helicases as Possible SARS-CoV-2 Proviral Factors: A Structural Overview of Their Hijacking Through Multiple Viral Proteins. Frontiers in Chemistry, 2020, 8, 602162.	1.8	25
11	Novel alternative ribonucleotide excision repair pathways in human cells by DDX3X and specialized DNA polymerases. Nucleic Acids Research, 2020, 48, 11551-11565.	6.5	9
12	DDX3X inhibitors, an effective way to overcome HIV-1 resistance targeting host proteins. European Journal of Medicinal Chemistry, 2020, 200, 112319.	2.6	27
13	A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells, 2020, 9, 1267.	1.8	400
14	Exploring the Implication of DDX3X in DENV Infection: Discovery of the First-in-Class DDX3X Fluorescent Inhibitor. ACS Medicinal Chemistry Letters, 2020, 11, 956-962.	1.3	19
15	ldentification of a new family of pyrazolo[3,4-d]pyrimidine derivatives as multitarget Fyn-Blk-Lyn inhibitors active on B- and T-lymphoma cell lines. European Journal of Medicinal Chemistry, 2019, 181, 111545.	2.6	13
16	Synthesis and Antiviral Activity of Novel 1,3,4-Thiadiazole Inhibitors of DDX3X. Molecules, 2019, 24, 3988.	1.7	31
17	Multitarget CFTR Modulators Endowed with Multiple Beneficial Side Effects for Cystic Fibrosis Patients: Toward a Simplified Therapeutic Approach. Journal of Medicinal Chemistry, 2019, 62, 10833-10847.	2.9	9
18	Identification of a novel antiviral micro-RNA targeting the NS1 protein of the H1N1 pandemic human influenza virus and a corresponding viral escape mutation. Antiviral Research, 2019, 171, 104593.	1.9	14

#	Article	IF	CITATIONS
19	Molecular docking, design, synthesis and biological evaluation of novel 2,3-aryl-thiazolidin-4-ones as potent NNRTIs. SAR and QSAR in Environmental Research, 2019, 30, 697-714.	1.0	4
20	DNA Polymerases. , 2019, , .		2
21	From the magic bullet to the magic target: exploiting the diverse roles of DDX3X in viral infections and tumorigenesis. Future Medicinal Chemistry, 2019, 11, 1357-1381.	1.1	22
22	DDX3X Helicase Inhibitors as a New Strategy To Fight the West Nile Virus Infection. Journal of Medicinal Chemistry, 2019, 62, 2333-2347.	2.9	49
23	Effect of α-Methoxy Substitution on the Anti-HIV Activity of Dihydropyrimidin-4(3 <i>H</i>)-ones. Journal of Medicinal Chemistry, 2019, 62, 604-621.	2.9	14
24	Efficient optimization of pyrazolo[3,4-d]pyrimidines derivatives as c-Src kinase inhibitors in neuroblastoma treatment. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3454-3457.	1.0	20
25	Identification of Broadâ€Spectrum Dengue/Zika Virus Replication Inhibitors by Functionalization of Quinoline and 2,6â€Diaminopurine Scaffolds. ChemMedChem, 2018, 13, 1371-1376.	1.6	13
26	p15PAF binding to PCNA modulates the DNA sliding surface. Nucleic Acids Research, 2018, 46, 9816-9828.	6.5	14
27	Ribonucleotide incorporation by human DNA polymerase η impacts translesion synthesis and RNase H2 activity. Nucleic Acids Research, 2017, 45, gkw1275.	6.5	31
28	Discovery of Multitarget Agents Active as Broad-Spectrum Antivirals and Correctors of Cystic Fibrosis Transmembrane Conductance Regulator for Associated Pulmonary Diseases. Journal of Medicinal Chemistry, 2017, 60, 1400-1416.	2.9	17
29	How to win the HIV-1 drug resistance hurdle race: running faster or jumping higher?. Biochemical Journal, 2017, 474, 1559-1577.	1.7	20
30	Chiral Indolylarylsulfone Non-Nucleoside Reverse Transcriptase Inhibitors as New Potent and Broad Spectrum Anti-HIV-1 Agents. Journal of Medicinal Chemistry, 2017, 60, 6528-6547.	2.9	19
31	Identification of new pyrrolo[2,3- d]pyrimidines as Src tyrosine kinase inhibitors inÂvitro active against Glioblastoma. European Journal of Medicinal Chemistry, 2017, 127, 369-378.	2.6	23
32	Living on the Edge: DNA Polymerase Lambda between Genome Stability and Mutagenesis. Chemical Research in Toxicology, 2017, 30, 1936-1941.	1.7	11
33	DNA Polymerases \hat{I} » and \hat{I}^2 : The Double-Edged Swords of DNA Repair. Genes, 2016, 7, 57.	1.0	16
34	Impact of ribonucleotide incorporation by DNA polymerases β and λ on oxidative base excision repair. Nature Communications, 2016, 7, 10805.	5.8	34
35	Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5388-5393.	3.3	100
36	The human tyrosine kinase Kit and its gatekeeper mutant T670I, show different kinetic properties: Implications for drug design. Bioorganic and Medicinal Chemistry, 2016, 24, 4555-4562.	1.4	8

#	Article	IF	CITATIONS
37	Novel pyrazolo[3,4- d]pyrimidines as dual Src-Abl inhibitors active against mutant form of Abl and the leukemia K-562 cell line. European Journal of Medicinal Chemistry, 2016, 123, 1-13.	2.6	13
38	A cascade screening approach for the identification of Bcr-Abl myristate pocket binders active against wild type and T315I mutant. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3436-3440.	1.0	1
39	Discovery of the First Potent and Selective Inhibitors of Human dCTP Pyrophosphatase 1. Journal of Medicinal Chemistry, 2016, 59, 1140-1148.	2.9	40
40	Development and in Vitro Evaluation of a Microbicide Gel Formulation for a Novel Non-Nucleoside Reverse Transcriptase Inhibitor Belonging to the <i>N</i> -Dihydroalkyloxybenzyloxopyrimidines (N-DABOs) Family. Journal of Medicinal Chemistry, 2016, 59, 2747-2759.	2.9	22
41	A multicomponent pharmacophore fragment-decoration approach to identify selective LRRK2-targeting probes. MedChemComm, 2016, 7, 484-494.	3.5	2
42	Discovery of Multitarget Antivirals Acting on Both the Dengue Virus NS5-NS3 Interaction and the Host Src/Fyn Kinases. Journal of Medicinal Chemistry, 2015, 58, 4964-4975.	2.9	52
43	Homology Model-Based Virtual Screening for the Identification of Human Helicase DDX3 Inhibitors. Journal of Chemical Information and Modeling, 2015, 55, 2443-2454.	2.5	75
44	Synthesis and antiviral activity of anthracene derivatives of isoxazolino-carbocyclic nucleoside analogues. Tetrahedron Letters, 2015, 56, 1986-1990.	0.7	12
45	Expansion of CAG triplet repeats by human DNA polymerases \hat{I} » and \hat{I}^2 in vitro, is regulated by flap endonuclease 1 and DNA ligase 1. DNA Repair, 2015, 29, 101-111.	1.3	11
46	Studies on the ATP Binding Site of Fyn Kinase for the Identification of New Inhibitors and Their Evaluation as Potential Agents against Tauopathies and Tumors. Journal of Medicinal Chemistry, 2015, 58, 4590-4609.	2.9	31
47	Unconventional Knoevenagel-type indoles: Synthesis and cell-based studies for the identification of pro-apoptotic agents. European Journal of Medicinal Chemistry, 2015, 102, 648-660.	2.6	10
48	The novel influenza A virus protein PA-X and its naturally deleted variant show different enzymatic properties in comparison to the viral endonuclease PA. Nucleic Acids Research, 2015, 43, 9405-9417.	6.5	51
49	Combining X-ray Crystallography and Molecular Modeling toward the Optimization of Pyrazolo[3,4- <i>d</i>]pyrimidines as Potent c-Src Inhibitors Active in Vivo against Neuroblastoma. Journal of Medicinal Chemistry, 2015, 58, 347-361.	2.9	53
50	4-Thiazolidinone derivatives as potent antimicrobial agents: microwave-assisted synthesis, biological evaluation and docking studies. MedChemComm, 2015, 6, 319-326.	3.5	41
51	Mutational analysis of the HIV-1 auxiliary protein Vif identifies independent domains important for the physical and functional interaction with HIV-1 reverse transcriptase. Nucleic Acids Research, 2014, 42, 4144-4144.	6.5	0
52	Indolylarylsulfones Carrying a Heterocyclic Tail as Very Potent and Broad Spectrum HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 9945-9957.	2.9	42
53	Targeting Cellular Cofactors in HIV Therapy. Topics in Medicinal Chemistry, 2014, , 183-222.	0.4	8
54	The <scp>A</scp> rabidopsis <scp>STRESS RESPONSE SUPPRESSOR DEAD</scp> â€box <scp>RNA</scp> helicases are nucleolar†and chromocenterâ€localized proteins that undergo stressâ€mediated relocalization and are involved in epigenetic gene silencing. Plant Journal, 2014, 79, 28-43.	2.8	62

#	Article	IF	CITATIONS
55	Exploring the Role of 2-Chloro-6-fluoro Substitution in 2-Alkylthio-6-benzyl-5-alkylpyrimidin-4(3 <i>H</i>)-ones: Effects in HIV-1-Infected Cells and in HIV-1 Reverse Transcriptase Enzymes. Journal of Medicinal Chemistry, 2014, 57, 5212-5225.	2.9	17
56	Exploring the Chemical Space around the Privileged Pyrazolo[3,4- <i>d</i>]pyrimidine Scaffold: Toward Novel Allosteric Inhibitors of T315I-Mutated Abl. ACS Combinatorial Science, 2014, 16, 168-175.	3.8	16
57	New indolylarylsulfones as highly potent and broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitors. European Journal of Medicinal Chemistry, 2014, 80, 101-111.	2.6	21
58	HCV-targeted Antivirals: Current Status and Future Challenges. Current Pharmaceutical Design, 2014, 20, 3445-3464.	0.9	8
59	What Makes Y Family Pols Potential Candidates for Molecular Targeted Therapies and Novel Biotechnological Applications. Current Molecular Medicine, 2014, 14, 96-114.	0.6	4
60	New Nucleotide-Competitive Non-Nucleoside Inhibitors of Terminal Deoxynucleotidyl Transferase: Discovery, Characterization, and Crystal Structure in Complex with the Target. Journal of Medicinal Chemistry, 2013, 56, 7431-7441.	2.9	24
61	Cytotoxicity of $\hat{I}\pm$ -dicarbonyl compounds submitted to in vitro simulated digestion process. Food Chemistry, 2013, 140, 654-659.	4.2	40
62	New in silico and conventional in vitro approaches to advance HIV drug discovery and design. Expert Opinion on Drug Discovery, 2013, 8, 83-92.	2.5	5
63	Identification and quantification of α-dicarbonyl compounds in balsamic and traditional balsamic vinegars and their cytotoxicity against human cells. Journal of Food Composition and Analysis, 2013, 31, 67-74.	1.9	26
64	Human DNA Polymerase β, but Not λ, Can Bypass a 2-Deoxyribonolactone Lesion Together with Proliferating Cell Nuclear Antigen. ACS Chemical Biology, 2013, 8, 336-344.	1.6	7
65	Pyrazolo[3,4- <i>d</i>]pyrimidine Prodrugs: Strategic Optimization of the Aqueous Solubility of Dual Src/Abl Inhibitors. ACS Medicinal Chemistry Letters, 2013, 4, 622-626.	1.3	16
66	Identification of Hck Inhibitors As Hits for the Development of Antileukemia and Antiâ€HIV Agents. ChemMedChem, 2013, 8, 1353-1360.	1.6	19
67	Design, Synthesis, and Biological Evaluation of Pyrazolo[3,4- <i>d</i>]pyrimidines Active in Vivo on the Bcr-Abl T315I Mutant. Journal of Medicinal Chemistry, 2013, 56, 5382-5394.	2.9	39
68	Silencing of human DNA polymerase λ causes replication stress and is synthetically lethal with an impaired S phase checkpoint. Nucleic Acids Research, 2013, 41, 229-241.	6.5	31
69	DNA polymerase δ-interacting protein 2 is a processivity factor for DNA polymerase λ during 8-oxo-7,8-dihydroguanine bypass. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18850-18855.	3.3	44
70	A Combination Strategy to Inhibit Pimâ€1: Synergism between Noncompetitive and ATPâ€Competitive Inhibitors. ChemMedChem, 2013, 8, 484-496.	1.6	13
71	Identification of host cell factors involved in influenza A virus infection. Future Virology, 2013, 8, 195-208.	0.9	3
72	Foreword ("New Targets and New Drugs: from in silico Planning to in vivo Testingâ€). Current Pharmaceutical Biotechnology, 2013, 14, 475-476.	0.9	0

#	Article	IF	CITATIONS
73	Two Birds with a Stone: Molecular Cancer Therapy Targeting Signal Transduction and DNA Repair Pathways. Resistance To Targeted Anti-cancer Therapeutics, 2013, , 163-186.	0.1	1
74	The Power of Enzyme Kinetics in the Drug Development Process. Current Pharmaceutical Biotechnology, 2013, 14, 551-560.	0.9	3
75	Characterization of the 6-methyl isoxanthopterin (6-MI) base analog dimer, a spectroscopic probe for monitoring guanine base conformations at specific sites in nucleic acids. Nucleic Acids Research, 2012, 40, 1191-1202.	6.5	31
76	Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases λ and β on normal and repetitive DNA sequences. Nucleic Acids Research, 2012, 40, 5577-5590.	6.5	54
77	A new proofreading mechanism for lesion bypass by DNA polymeraseâ€î». EMBO Reports, 2012, 13, 68-74.	2.0	14
78	2-(Alkyl/Aryl)Amino-6-Benzylpyrimidin-4(3 <i>H</i>)-ones as Inhibitors of Wild-Type and Mutant HIV-1: Enantioselectivity Studies. Journal of Medicinal Chemistry, 2012, 55, 3558-3562.	2.9	29
79	Synthesis, Biological Activity, and ADME Properties of Novel <i>S</i> â€ÐABOs/ <i>N</i> â€ÐABOs as HIV Reverse Transcriptase Inhibitors. ChemMedChem, 2012, 7, 883-896.	1.6	12
80	New Nitrogen Containing Substituents at the Indole-2-carboxamide Yield High Potent and Broad Spectrum Indolylarylsulfone HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 6634-6638.	2.9	52
81	Pyridobenzothiazole derivatives as new chemotype targeting the HCV NS5B polymerase. Bioorganic and Medicinal Chemistry, 2012, 20, 866-876.	1.4	41
82	Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: Towards the next generation HIV-1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2094-2098.	1.0	85
83	Next generation of antiretroviral agents targeting the RNA binding site of the HIV-1 cellular cofactor DDX3: an innovative therapeutic approach. Retrovirology, 2012, 9, .	0.9	0
84	Non-Nucleoside Inhibitors of Human Adenosine Kinase: Synthesis, Molecular Modeling, and Biological Studies. Journal of Medicinal Chemistry, 2011, 54, 1401-1420.	2.9	27
85	Indolylarylsulfones as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: New Cyclic Substituents at Indole-2-carboxamide. Journal of Medicinal Chemistry, 2011, 54, 1587-1598.	2.9	137
86	Exploiting the Nucleotide Substrate Specificity of Repair DNA Polymerases To Develop Novel Anticancer Agents. Molecules, 2011, 16, 7994-8019.	1.7	13
87	A Motif Unique to the Human Dead-Box Protein DDX3 Is Important for Nucleic Acid Binding, ATP Hydrolysis, RNA/DNA Unwinding and HIV-1 Replication. PLoS ONE, 2011, 6, e19810.	1.1	85
88	The PDZ-Ligand and Src-Homology Type 3 Domains of Epidemic Avian Influenza Virus NS1 Protein Modulate Human Src Kinase Activity during Viral Infection. PLoS ONE, 2011, 6, e27789.	1.1	16
89	Mechanism of Interaction of Novel Indolylarylsulfone Derivatives with K103N and Y181I Mutant HIV-1 Reverse Transcriptase in Complex with its Substrates. Antiviral Chemistry and Chemotherapy, 2011, 22, 107-118.	0.3	7
90	2,3â€Ðihydroâ€1,2â€Ðiphenylâ€substituted 4Hâ€Pyridinone Derivatives as New Anti Flaviviridae Inhibitors. Chemical Biology and Drug Design, 2011, 77, 441-449.	1.5	9

#	Article	IF	CITATIONS
91	Identification of potent c-Src inhibitors strongly affecting the proliferation of human neuroblastoma cells. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5928-5933.	1.0	48
92	DNA replication and repair bypass machines. Current Opinion in Chemical Biology, 2011, 15, 627-635.	2.8	56
93	Design, Synthesis, Biological Activity, and ADME Properties of Pyrazolo[3,4- <i>d</i>]pyrimidines Active in Hypoxic Human Leukemia Cells: A Lead Optimization Study. Journal of Medicinal Chemistry, 2011, 54, 2610-2626.	2.9	75
94	Diarylpyrimidineâ^'Dihydrobenzyloxopyrimidine Hybrids: New, Wide-Spectrum Anti-HIV-1 Agents Active at (Sub)-Nanomolar Level. Journal of Medicinal Chemistry, 2011, 54, 3091-3096.	2.9	47
95	Toward the Discovery of Novel Antiâ€HIV Drugs. Secondâ€Generation Inhibitors of the Cellular ATPase DDX3 with Improved Antiâ€HIV Activity: Synthesis, Structure–Activity Relationship Analysis, Cytotoxicity Studies, and Target Validation. ChemMedChem, 2011, 6, 1371-1389.	1.6	95
96	<i>N</i> â€{2â€Methylâ€5â€(triazolâ€1â€yl)phenyl]pyrimidinâ€2â€amine as a Scaffold for the Synthesis of Inhib Bcrâ€Abl. ChemMedChem, 2011, 6, 2009-2018.	itors of	41
97	Discovery of potent nucleotide-mimicking competitive inhibitors of hepatitis C virus NS3 helicase. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2776-2779.	1.0	14
98	Enantioselective binding of second generation pyrrolobenzoxazepinones to the catalytic ternary complex of HIV-1 RT wild-type and L100I and K103N drug resistant mutants. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3935-3938.	1.0	4
99	Overcoming the Drug Resistance Problem with Second-Generation Tyrosine Kinase Inhibitors: From Enzymology to Structural Models. Current Medicinal Chemistry, 2011, 18, 2836-2847.	1.2	6
100	The 2009 Influenza Pandemic: Promising Lessons For Antiviral Therapy For Future Outbreaks. Current Medicinal Chemistry, 2011, 18, 5466-5475.	1.2	13
101	Targeting the Human DEAD-Box Polypeptide 3 (DDX3) RNA Helicase as a Novel Strategy to Inhibit Viral Replication. Current Medicinal Chemistry, 2011, 18, 3015-3027.	1.2	61
102	Oxidative DNA Damage Bypass in <i>Arabidopsis thaliana</i> Requires DNA Polymerase λ and Proliferating Cell Nuclear Antigen 2. Plant Cell, 2011, 23, 806-822.	3.1	47
103	Effect of 8-oxoguanine and abasic site DNA lesions on <i>in vitro</i> elongation by human DNA polymerase lµ in the presence of replication protein A and proliferating-cell nuclear antigen. Biochemical Journal, 2010, 429, 573-582.	1.7	21
104	Dual Src and Abl inhibitors target wild type Abl and the AblT315I Imatinib-resistant mutant with different mechanisms. Bioorganic and Medicinal Chemistry, 2010, 18, 3999-4008.	1.4	18
105	Synthesis, evaluation and molecular modelling studies of some novel 3-(3,4-dihydroisoquinolin-2(1H)-yl)-N-(substitutedphenyl) propanamides as HIV-1 non-nucleoside reverse transcriptase inhibitors. Journal of Chemical Sciences, 2010, 122, 169-176.	0.7	6
106	Slow binding–tight binding interaction between benzimidazol-2-one inhibitors and HIV-1 reverse transcriptase containing the lysine 103 to asparagine mutation. Antiviral Research, 2010, 86, 268-275.	1.9	5
107	Design and Synthesis of Thiadiazoles and Thiazoles Targeting the Bcrâ€Abl T315I Mutant: from Docking False Positives to ATPâ€Noncompetitive Inhibitors. ChemMedChem, 2010, 5, 1226-1231.	1.6	16
108	Crystal Structure of HIVâ€1 Reverse Transcriptase Bound to a Nonâ€Nucleoside Inhibitor with a Novel Mechanism of Action. Angewandte Chemie - International Edition, 2010, 49, 1805-1808.	7.2	31

#	Article	IF	CITATIONS
109	Novel 1,3-dihydro-benzimidazol-2-ones and their analogues as potent non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 1702-1710.	1.4	36
110	Inhibitors of human immunodeficiency virus-1 replication targeting the human DEAD-box polypeptide 3 (DDX3) RNA helicase. Retrovirology, 2010, 7, .	0.9	0
111	Molecular Characterization of c-Abl/c-Src Kinase Inhibitors Targeted against Murine Tumour Progenitor Cells that Express Stem Cell Markers. PLoS ONE, 2010, 5, e14143.	1.1	19
112	HIV-1 RT Inhibitors with a Novel Mechanism of Action: NNRTIs that Compete with the Nucleotide Substrate. Viruses, 2010, 2, 880-899.	1.5	38
113	Genetic divergence of influenza A NS1 gene in pandemic 2009 H1N1 isolates with respect to H1N1 and H3N2 isolates from previous seasonal epidemics. Virology Journal, 2010, 7, 209.	1.4	6
114	DNA Polymerases β and λ Bypass Thymine Glycol in Gapped DNA Structures. Biochemistry, 2010, 49, 4695-4704.	1.2	34
115	DNA Polymerases and Mutagenesis in Human Cancers. Sub-Cellular Biochemistry, 2010, 50, 165-188.	1.0	8
116	Novel Thiazolidinone Derivatives with an Uncommon Mechanism of Inhibition Towards HIV-1 Reverse Transcriptase. Letters in Drug Design and Discovery, 2010, 7, 228-234.	0.4	13
117	The Block of DNA Polymerase δ Strand Displacement Activity by an Abasic Site Can Be Rescued by the Concerted Action of DNA Polymerase β and Flap Endonuclease 1. Journal of Biological Chemistry, 2009, 284, 14267-14275.	1.6	24
118	Mutational analysis of the HIV-1 auxiliary protein Vif identifies independent domains important for the physical and functional interaction with HIV-1 reverse transcriptase. Nucleic Acids Research, 2009, 37, 3660-3669.	6.5	24
119	Non-nucleoside HIV-1 reverse transcriptase inhibitors di-halo-indolyl aryl sulfones achieve tight binding to drug-resistant mutants by targeting the enzyme–substrate complex. Antiviral Research, 2009, 81, 47-55.	1.9	16
120	3D QSAR Models Built on Structure-Based Alignments of Abl Tyrosine Kinase Inhibitors. ChemMedChem, 2009, 4, 976-987.	1.6	14
121	Design, synthesis, and structure–activity relationships of 1,3-dihydrobenzimidazol-2-one analogues as anti-HIV agents. Bioorganic and Medicinal Chemistry, 2009, 17, 5962-5967.	1.4	42
122	Determination of permeability and lipophilicity of pyrazolo-pyrimidine tyrosine kinase inhibitors and correlation with biological data. European Journal of Medicinal Chemistry, 2009, 44, 3712-3717.	2.6	16
123	Indolyl-pyrrolone as a new scaffold for Pim1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1512-1516.	1.0	27
124	The resveratrol analogue 4,4′-dihydroxy-trans-stilbene inhibits cell proliferation with higher efficiency but different mechanism from resveratrol. International Journal of Biochemistry and Cell Biology, 2009, 41, 2493-2502.	1.2	40
125	Specific Targeting of Highly Conserved Residues in the HIV-1 Reverse Transcriptase Primer Grip Region. 2. Stereoselective Interaction to Overcome the Effects of Drug Resistant Mutations. Journal of Medicinal Chemistry, 2009, 52, 1224-1228.	2.9	15
126	Discovery of Chiral Cyclopropyl Dihydro-Alkylthio-Benzyl-Oxopyrimidine (S-DABO) Derivatives as Potent HIV-1 Reverse Transcriptase Inhibitors with High Activity Against Clinically Relevant Mutants. Journal of Medicinal Chemistry, 2009, 52, 840-851.	2.9	44

#	Article	IF	CITATIONS
127	Inhibition of Subgenomic Hepatitis C Virus RNA Replication by Acridone Derivatives: Identification of an NS3 Helicase Inhibitor. Journal of Medicinal Chemistry, 2009, 52, 3354-3365.	2.9	54
128	Indolylarylsulfones Bearing Natural and Unnatural Amino Acids. Discovery of Potent Inhibitors of HIV-1 Non-Nucleoside Wild Type and Resistant Mutant Strains Reverse Transcriptase and Coxsackie B4 Virus. Journal of Medicinal Chemistry, 2009, 52, 1922-1934.	2.9	54
129	The balance between the rates of incorporation and pyrophosphorolytic removal influences the HIVâ€1 reverse transcriptase bypass of an abasic site with deoxyâ€, dideoxyâ€, and ribonucleotides. Proteins: Structure, Function and Bioinformatics, 2008, 71, 715-727.	1.5	7
130	A Multidisciplinary Approach for the Identification of Novel HIVâ€l Nonâ€Nucleoside Reverse Transcriptase Inhibitors: Sâ€DABOCs and DAVPs. ChemMedChem, 2008, 3, 573-593.	1.6	37
131	Substrate-Induced Stable Enzyme-Inhibitor Complex Formation Allows Tight Binding of Novel 2-Aminopyrimidin-4(3H)-ones to Drug-Resistant HIV-1 Reverse Transcriptase Mutants. ChemMedChem, 2008, 3, 1412-1418.	1.6	8
132	Synthesis, biological evaluation and docking studies of 4-amino substituted 1H-pyrazolo[3,4-d]pyrimidines. European Journal of Medicinal Chemistry, 2008, 43, 2665-2676.	2.6	70
133	Novel N1-substituted 1,3-dihydro-2H-benzimidazol-2-ones as potent non-nucleoside reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 7429-7435.	1.4	43
134	Discovery and SAR of 1,3,4-thiadiazole derivatives as potent Abl tyrosine kinase inhibitors and cytodifferentiating agents. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1207-1211.	1.0	47
135	Towards novel S-DABOC inhibitors: Synthesis, biological investigation, and molecular modeling studies. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5777-5780.	1.0	11
136	N-(thiazol-2-yl)-2-thiophene carboxamide derivatives as Abl inhibitors identified by a pharmacophore-based database screening of commercially available compounds. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4328-4331.	1.0	15
137	5-Alkyl-6-benzyl-2-(2-oxo-2-phenylethylsulfanyl)pyrimidin-4(3H)-ones, a Series of Anti-HIV-1 Agents of the Dihydro-alkoxy-benzyl-oxopyrimidine Family with Peculiar Structureâ^'Activity Relationship Profile. Journal of Medicinal Chemistry, 2008, 51, 4641-4652.	2.9	52
138	Selective targeting of the HIV-1 reverse transcriptase catalytic complex through interaction with the "primer grip―region by pyrrolobenzoxazepinone non-nucleoside inhibitors correlates with increased activity towards drug-resistant mutants. Biochemical Pharmacology, 2008, 76, 156-168.	2.0	6
139	AKAP149 Binds to HIV-1 Reverse Transcriptase and Is Involved in the Reverse Transcription. Journal of Molecular Biology, 2008, 383, 783-796.	2.0	17
140	Structure-Based Optimization of Pyrazolo[3,4-d]pyrimidines as Abl Inhibitors and Antiproliferative Agents toward Human Leukemia Cell Lines. Journal of Medicinal Chemistry, 2008, 51, 1252-1259.	2.9	77
141	Pharmacophore Modeling and Molecular Docking Led to the Discovery of Inhibitors of Human Immunodeficiency Virus-1 Replication Targeting the Human Cellular Aspartic Acidâ^'Clutamic Acidâ^'Alanineâ^'Aspartic Acid Box Polypeptide 3. Journal of Medicinal Chemistry, 2008, 51, 6635-6638.	2.9	81
142	Replication protein A and proliferating cell nuclear antigen coordinate DNA polymerase selection in 8-oxo-guanine repair. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20689-20694.	3.3	68
143	Repair and Translesion DNA Polymerases as Anticancer Drug Targets. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 431-447.	0.9	26
144	Photoreactive DNA Probes as a Tool for Studying the Translesion Synthesis System in Mammalian Cell Extracts. Medicinal Chemistry, 2008, 4, 155-162.	0.7	2

#	Article	IF	CITATIONS
145	Current Advances in the Development of Anticancer Drugs Targeting Tyrosine Kinases of the Src Family. Current Drug Therapy, 2008, 3, 158-176.	0.2	14
146	The checkpoint clamp, Rad9-Rad1-Hus1 complex, preferentially stimulates the activity of apurinic/apyrimidinic endonuclease 1 and DNA polymerase in long patch base excision repair. Nucleic Acids Research, 2007, 35, 2596-2608.	6.5	65
147	Error-free bypass of 2-hydroxyadenine by human DNA polymerase with Proliferating Cell Nuclear Antigen and Replication Protein A in different sequence contexts. Nucleic Acids Research, 2007, 35, 5173-5181.	6.5	33
148	Human base excision repair complex is physically associated to DNA replication and cell cycle regulatory proteins. Nucleic Acids Research, 2007, 35, 1569-1577.	6.5	91
149	Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site. Biochemical Journal, 2007, 402, 321-329.	1.7	6
150	Structure-Based Pharmacophore Identification of New Chemical Scaffolds as Non-Nucleoside Reverse Transcriptase Inhibitors. Journal of Chemical Information and Modeling, 2007, 47, 557-562.	2.5	56
151	Dihydro-alkylthio-benzyl-oxopyrimidines as Inhibitors of Reverse Transcriptase: Synthesis and Rationalization of the Biological Data on Both Wild-Type Enzyme and Relevant Clinical Mutants. Journal of Medicinal Chemistry, 2007, 50, 6580-6595.	2.9	48
152	Identification of a Novel Pyrazolo[3,4- <i>d</i>]pyrimidine Able To Inhibit Cell Proliferation of a Human Osteogenic Sarcoma in Vitro and in a Xenograft Model in Mice. Journal of Medicinal Chemistry, 2007, 50, 5579-5588.	2.9	79
153	Investigation of Novel Lipid-Functionalized PNA Monomers as Potential HIV-1 Non-Nucleoside Reverse Transcriptase and/or Integrase Inhibitors. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1063-1066.	0.4	3
154	Synthesis and Biological Properties of Novel 2-Aminopyrimidin-4(3H)-ones Highly Potent against HIV-1 Mutant Strains. Journal of Medicinal Chemistry, 2007, 50, 5412-5424.	2.9	55
155	Indolyl Aryl Sulfones as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors:  Role of Two Halogen Atoms at the Indole Ring in Developing New Analogues with Improved Antiviral Activity. Journal of Medicinal Chemistry, 2007, 50, 5034-5038.	2.9	56
156	Discovery of Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase Competing with the Nucleotide Substrate. Angewandte Chemie - International Edition, 2007, 46, 1810-1813.	7.2	19
157	Inhibition of Bcr-Abl Phosphorylation and Induction of Apoptosis by Pyrazolo[3,4-d]pyrimidines in Human Leukemia Cells. ChemMedChem, 2007, 2, 343-353.	1.6	27
158	Slow-, Tight-Binding HIV-1 Reverse Transcriptase Non-Nucleoside Inhibitors Highly Active against Drug-Resistant Mutants. ChemMedChem, 2007, 2, 445-448.	1.6	19
159	<i>N</i> ² â€Benzyloxycarbonylguanâ€9â€yl Acetic Acid Derivatives as HIVâ€∎ Reverse Transcriptase Nonâ€Nucleoside Inhibitors with Decreased Loss of Potency Against Common Drugâ€Resistance Mutations ChemMedChem, 2007, 2, 1405-1409.	1.6	3
160	Discovery of novel benzimidazolones as potent non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1956-1960.	1.0	70
161	Human DEAD-box ATPase DDX3 shows a relaxed nucleoside substrate specificity. Proteins: Structure, Function and Bioinformatics, 2007, 67, 1128-1137.	1.5	32
162	8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins. Nature, 2007, 447, 606-608.	13.7	207

#	Article	IF	CITATIONS
163	Replication of 2-hydroxyadenine-containing DNA and recognition by human MutSα. DNA Repair, 2007, 6, 355-366.	1.3	25
164	NNRTI-selected mutations at codon 190 of human immunodeficiency virus type 1 reverse transcriptase decrease susceptibility to stavudine and zidovudine. Antiviral Research, 2007, 76, 99-103.	1.9	9
165	Nuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete sub-domains of the shoot apical meristem of Arabidopsis thaliana. Nucleic Acids Research, 2006, 34, 1281-1292.	6.5	138
166	Design, Molecular Modeling, Synthesis, and Anti-HIV-1 Activity of New Indolyl Aryl Sulfones. Novel Derivatives of the Indole-2-carboxamide. Journal of Medicinal Chemistry, 2006, 49, 3172-3184.	2.9	157
167	Pyrazolo[3,4-d]pyrimidines as Potent Antiproliferative and Proapoptotic Agents toward A431 and 8701-BC Cells in Culture via Inhibition of c-Src Phosphorylation. Journal of Medicinal Chemistry, 2006, 49, 1549-1561.	2.9	85
168	A Combination of Docking/Dynamics Simulations and Pharmacophoric Modeling To Discover New Dual c-Src/Abl Kinase Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 3278-3286.	2.9	58
169	Synthesis and biological investigation of S-aryl-S-DABO derivatives as HIV-1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3541-3544.	1.0	29
170	Design, Synthesis, Biological Evaluation, and Molecular Modeling Studies of TIBO-Like Cyclic Sulfones as Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors. ChemMedChem, 2006, 1, 82-95.	1.6	19
171	Arylthiopyrrole (AThP) Derivatives as Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors: Synthesis, Structure–Activity Relationships, and Docking Studies (Partâ€1). ChemMedChem, 2006, 1, 1367-1378.	1.6	31
172	Arylthiopyrrole (AThP) Derivatives as Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors: Synthesis, Structure–Activity Relationships, and Docking Studies (Partâ€2). ChemMedChem, 2006, 1, 1379-1390.	1.6	12
173	Human replication protein A can suppress the intrinsic in vitro mutator phenotype of human DNA polymerase Â. Nucleic Acids Research, 2006, 34, 1405-1415.	6.5	28
174	Expanding the repertoire of DNA polymerase substrates: template-instructed incorporation of non-nucleoside triphosphate analogues by DNA polymerases and Â. Nucleic Acids Research, 2006, 35, 45-57.	6.5	10
175	Human Terminal Deoxynucleotidyl Transferases as Novel Targets for Anticancer Chemotherapy. Current Medicinal Chemistry, 2006, 13, 2353-2368.	1.2	15
176	Indolyl Aryl Sulphones as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: Synthesis, Biological Evaluation and Binding Mode Studies of New Derivatives at Indole-2-carboxamide. Antiviral Chemistry and Chemotherapy, 2006, 17, 59-77.	0.3	25
177	Current state-of-the-art in preclinical and clinical development of novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Expert Opinion on Therapeutic Patents, 2006, 16, 939-962.	2.4	9
178	Inhibition of mammalian DNA polymerases by resveratrol: mechanism and structural determinants. Biochemical Journal, 2005, 389, 259-268.	1.7	43
179	5-Alkyl-2-alkylamino-6-(2,6-difluorophenylalkyl)-3,4-dihydropyrimidin-4(3H)-ones, a new series of potent, broad-spectrum non-nucleoside reverse transcriptase inhibitors belonging to the DABO family. Bioorganic and Medicinal Chemistry, 2005, 13, 2065-2077.	1.4	46
180	Parallel Solution-Phase Synthesis of 4-Dialkylamino-2-methylsulfonyl-6-vinylpyrimidines ChemInform, 2005, 36, no.	0.1	0

#	Article	IF	CITATIONS
181	Diketo Hexenoic Acid Derivatives Are Novel Selective Non-Nucleoside Inhibitors of Mammalian Terminal Deoxynucleotidyl Transferases, with Potent Cytotoxic Effect against Leukemic Cells. Molecular Pharmacology, 2005, 68, 538-550.	1.0	15
182	DNA Elongation by the Human DNA Polymerase λ Polymerase and Terminal Transferase Activities Are Differentially Coordinated by Proliferating Cell Nuclear Antigen and Replication Protein A. Journal of Biological Chemistry, 2005, 280, 1971-1981.	1.6	26
183	High Potency of Indolyl Aryl Sulfone Nonnucleoside Inhibitors towards Drug-Resistant Human Immunodeficiency Virus Type 1 Reverse Transcriptase Mutants Is Due to Selective Targeting of Different Mechanistic Forms of the Enzyme. Antimicrobial Agents and Chemotherapy, 2005, 49, 4546-4554.	1.4	19
184	The Human Stress-Activated Protein kin17 Belongs to the Multiprotein DNA Replication Complex and Associates In Vivo with Mammalian Replication Origins. Molecular and Cellular Biology, 2005, 25, 3814-3830.	1.1	31
185	8-Oxoguanine incorporation into DNA repeats in vitro and mismatch recognition by MutSÂ. Nucleic Acids Research, 2005, 33, 6081-6081.	6.5	5
186	Drug Resistance Mutations in the Nucleotide Binding Pocket of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Differentially Affect the Phosphorolysis-Dependent Primer Unblocking Activity in the Presence of Stavudine and Zidovudine and Its Inhibition by Efavirenz. Antimicrobial Agents and Chemotherapy, 2005, 49, 342-349.	1.4	8
187	Incorporation of non-nucleoside triphosphate analogues opposite to an abasic site by human DNA polymerases and Â. Nucleic Acids Research, 2005, 33, 4117-4127.	6.5	14
188	8-Oxoguanine incorporation into DNA repeats in vitro and mismatch recognition by MutSÂ. Nucleic Acids Research, 2005, 33, 5094-5105.	6.5	69
189	Novel 1-[2-(Diarylmethoxy)ethyl]-2-methyl-5-nitroimidazoles as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. A Structureâ^'Activity Relationship Investigation. Journal of Medicinal Chemistry, 2005, 48, 4378-4388.	2.9	51
190	Specific Targeting of Hepatitis C Virus NS3 RNA Helicase. Discovery of the Potent and Selective Competitive Nucleotide-Mimicking Inhibitor QU663. Biochemistry, 2005, 44, 9637-9644.	1.2	71
191	Parallel Solution-Phase Synthesis of 4-Dialkylamino-2-methylsulfonyl-6-vinylpyrimidines. ACS Combinatorial Science, 2005, 7, 117-122.	3.3	27
192	Specific Targeting Highly Conserved Residues in the HIV-1 Reverse Transcriptase Primer Grip Region. Design, Synthesis, and Biological Evaluation of Novel, Potent, and Broad Spectrum NNRTIs with Antiviral Activity. Journal of Medicinal Chemistry, 2005, 48, 7153-7165.	2.9	43
193	Parallel Solution-Phase and Microwave-Assisted Synthesis of New S-DABO Derivatives Endowed with Subnanomolar Anti-HIV-1 Activity. Journal of Medicinal Chemistry, 2005, 48, 8000-8008.	2.9	45
194	Computational Strategies in Discovering Novel Non-nucleoside Inhibitors of HIV-1 RT. Journal of Medicinal Chemistry, 2005, 48, 3433-3437.	2.9	58
195	DNA Polymerases and Diseases. , 2005, , 69-102.		3
196	Human Immunodeficiency Virus (HIV-1) Auxiliary Protein Vif and Cellular APOBEC Deaminases: Their Roles Unveiled?. Journal of Biological Sciences, 2005, 5, 855-863.	0.1	1
197	Cln145Met/Leu Changes in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Confer Resistance to Nucleoside and Nonnucleoside Analogs and Impair Virus Replication. Antimicrobial Agents and Chemotherapy, 2004, 48, 4611-4617.	1.4	20
198	Effects of Drug Resistance Mutations L100I and V106A on the Binding of Pyrrolobenzoxazepinone Nonnucleoside Inhibitors to the Human Immunodeficiency Virus Type 1 Reverse Transcriptase Catalytic Complex. Antimicrobial Agents and Chemotherapy, 2004, 48, 1570-1580.	1.4	5

#	Article	IF	CITATIONS
199	The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase and increases its DNA substrate utilisation efficiency: implications for DNA repair. Nucleic Acids Research, 2004, 32, 3316-3324.	6.5	108
200	The human DNA polymerase \hat{I} » interacts with PCNA through a domain important for DNA primer binding and the interaction is inhibited by p21 /WAF1/CIP1. FASEB Journal, 2004, 18, 1743-1745.	0.2	23
201	The RNA helicase, nucleotide 5′-triphosphatase, and RNA 5′-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology, 2004, 328, 208-218.	1.1	144
202	Human DNA Polymerases λ and β Show Different Efficiencies of Translesion DNA Synthesis past Abasic Sites and Alternative Mechanisms for Frameshift Generationâ€. Biochemistry, 2004, 43, 11605-11615.	1.2	65
203	De Novo DNA Synthesis by Human DNA Polymerase λ, DNA Polymerase μ and Terminal Deoxyribonucleotidyl Transferase. Journal of Molecular Biology, 2004, 339, 395-404.	2.0	72
204	Vif is an auxiliary factor of the HIV-1 reverse transcriptase and facilitates abasic site bypass. Biochemical Journal, 2004, 383, 475-482.	1.7	20
205	HIV-1 Reverse Transcriptase Inhibitors: Current Issues and Future Perspectives. Current Drug Metabolism, 2004, 5, 283-290.	0.7	14
206	Proliferating cell nuclear antigen (PCNA): a dancer with many partners. Journal of Cell Science, 2003, 116, 3051-3060.	1.2	950
207	DNA replication: a complex matter (EMBO reports July 2003) (Correction). EMBO Reports, 2003, 4, 766-766.	2.0	0
208	DNA replication: a complex matter. EMBO Reports, 2003, 4, 666-670.	2.0	53
209	Human DNA Polymerase λ Diverged in Evolution from DNA Polymerase β toward Specific Mn++ Dependence:  a Kinetic and Thermodynamic Study. Biochemistry, 2003, 42, 7467-7476.	1.2	75
210	Human DNA Polymerase λ Possesses Terminal Deoxyribonucleotidyl Transferase Activity And Can Elongate RNA Primers: Implications for Novel Functions. Journal of Molecular Biology, 2003, 328, 63-72.	2.0	74
211	Nevirapine Resistance Mutation at Codon 181 of the HIV-1 Reverse Transcriptase Confers Stavudine Resistance by Increasing Nucleotide Substrate Discrimination and Phosphorolytic Activity. Journal of Biological Chemistry, 2003, 278, 15469-15472.	1.6	21
212	Selective interactions of human kin17 and RPA proteins with chromatin and the nuclear matrix in a DNA damage- and cell cycle-regulated manner. Nucleic Acids Research, 2003, 31, 4162-4175.	6.5	19
213	Human Proliferating Cell Nuclear Antigen, Poly(ADP-ribose) Polymerase-1, and p21 /. Journal of Biological Chemistry, 2003, 278, 39265-39268.	1.6	80
214	Mutagenesis of human DNA polymerase Â: essential roles of Tyr505 and Phe506 for both DNA polymerase and terminal transferase activities. Nucleic Acids Research, 2003, 31, 6916-6925.	6.5	24
215	Nevirapine-selected mutations Y181I/C of HIV-1 reverse transcriptase confer cross-resistance to stavudine. Aids, 2003, 17, 1568-1570.	1.0	20
216	Antivirals at the Mirror: The Lack of Stereospecificity of Some Viral and Human Enzymes Offers Novel Opportunities in Antiviral Drug Development. Current Drug Targets Infectious Disorders, 2003, 3, 41-53.	2.1	18

#	Article	IF	CITATIONS
217	Detection of a new HIV-1 reverse transcriptase mutation (Q145M) conferring resistance to nucleoside and non-nucleoside inhibitors in a patient failing highly active antiretroviral therapy. Aids, 2003, 17, 924-927.	1.0	13
218	DNA Polymerase λ from Calf Thymus Preferentially Replicates Damaged DNA. Journal of Biological Chemistry, 2002, 277, 18454-18458.	1.6	57
219	Human DNA Polymerase λ Functionally and Physically Interacts with Proliferating Cell Nuclear Antigen in Normal and Translesion DNA Synthesis. Journal of Biological Chemistry, 2002, 277, 48434-48440.	1.6	97
220	Reconstitution of the base excision repair pathway for 7,8-dihydro-8-oxoguanine with purified human proteins. Nucleic Acids Research, 2002, 30, 2124-2130.	6.5	88
221	Hepatitis C Virus NS3 ATPase/Helicase:Â An ATP Switch Regulates the Cooperativity among the Different Substrate Binding Sitesâ€. Biochemistry, 2002, 41, 10332-10342.	1.2	33
222	Non-Nucleoside HIV-1 Reverse Transcriptase (RT) Inhibitors: Past, Present, and Future Perspectives. Current Pharmaceutical Design, 2002, 8, 615-657.	0.9	124
223	DNA Polymerase Î, Purified from Human Cells is a High-fidelity Enzyme. Journal of Molecular Biology, 2002, 319, 359-369.	2.0	46
224	Combinations Against Combinations: Associations of Anti-HIV 1 Reverse Transcriptase Drugs Challenged by Constellations of Drug Resistance Mutations. Current Drug Metabolism, 2002, 3, 73-95.	0.7	25
225	A new and efficient synthesis of substituted 6-[(2′-Dialkylamino)ethyl] pyrimidine and 4- N,N -Dialkyl-6-vinyl-cytosine derivatives and evaluation of their anti-Rubella activity. Bioorganic and Medicinal Chemistry, 2002, 10, 2143-2153.	1.4	25
226	Eukaryotic DNA Polymerases. Annual Review of Biochemistry, 2002, 71, 133-163.	5.0	625
227	Cell cycle-dependent dynamic association of cyclin/Cdk complexes with human DNA replication proteins. EMBO Journal, 2002, 21, 2485-2495.	3.5	42
228	Specific Structural Determinants Are Responsible for the Antioxidant Activity and the Cell Cycle Effects of Resveratrol. Journal of Biological Chemistry, 2001, 276, 22586-22594.	1.6	430
229	Hepatitis C virus NS3 NTPase/Helicase: different stereoselectivity in nucleoside triphosphate utilisation suggests that NTPase and helicase activities are coupled by a nucleotide-dependent rate limiting step. Journal of Molecular Biology, 2001, 313, 683-694.	2.0	22
230	Quinoxalinylethylpyridylthioureas (QXPTs) as Potent Non-Nucleoside HIV-1 Reverse Transcriptase (RT) Inhibitors. Further SAR Studies and Identification of a Novel Orally Bioavailable Hydrazine-Based Antiviral Agent. Journal of Medicinal Chemistry, 2001, 44, 305-315.	2.9	87
231	HIV-1 reverse transcriptase and integrase enzymes physically interact and inhibit each other. FEBS Letters, 2001, 507, 39-44.	1.3	54
232	Research on anti-HIV-1 agents. Part 2: Solid-phase synthesis, biological evaluation and molecular modeling studies of 2,5,6-trisubstituted-4(3H)-pyrimidinones targeting HIV-1 reverse transcriptase. Tetrahedron, 2001, 57, 8357-8367.	1.0	37
233	Replication Protein A as a "Fidelity Clamp―for DNA Polymerase α. Journal of Biological Chemistry, 2001, 276, 18235-18242.	1.6	50
234	Okazaki fragment processing: Modulation of the strand displacement activity of DNA polymerase by the concerted action of replication protein A, proliferating cell nuclear antigen, and flap endonuclease-1. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14298-14303.	3.3	115

#	Article	IF	CITATIONS
235	Potentiation of Inhibition of Wild-Type and Mutant Human Immunodeficiency Virus Type 1 Reverse Transcriptases by Combinations of Nonnucleoside Inhibitors and d - and l -(β)-Dideoxynucleoside Triphosphate Analogs. Antimicrobial Agents and Chemotherapy, 2001, 45, 1192-1200.	1.4	13
236	The Stereoselective Targeting of a Specific Enzyme-Substrate Complex Is the Molecular Mechanism for the Synergic Inhibition of HIV-1 Reverse Transcriptase by (R)-(â^')-PPO464. Journal of Biological Chemistry, 2001, 276, 44653-44662.	1.6	9
237	Selective Interaction of the Human Immunodeficiency Virus Type 1 Reverse Transcriptase Nonnucleoside Inhibitor Efavirenz and Its Thio-Substituted Analog with Different Enzyme-Substrate Complexes. Antimicrobial Agents and Chemotherapy, 2000, 44, 1186-1194.	1.4	54
238	Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors: Synthesis and Biological Evaluation of Novel Quinoxalinylethylpyridylthioureas as Potent Antiviral Agents. Antiviral Chemistry and Chemotherapy, 2000, 11, 141-155.	0.3	10
239	DNA polymerase switching: I. Replication factor C displaces DNA polymerase α prior to PCNA loading. Journal of Molecular Biology, 2000, 295, 791-801.	2.0	94
240	Electron microscopic analysis reveals that replication factor C is sequestered by single-stranded DNA. Nucleic Acids Research, 1999, 27, 3433-3437.	6.5	10
241	Molecular basis for the enantioselectivity of HIV-1 reverse transcriptase: role of the 3'-hydroxyl group of the L-(beta)-ribose in chiral discrimination between D- and L-enantiomers of deoxy- and dideoxy-nucleoside triphosphate analogs. Nucleic Acids Research, 1999, 27, 972-978.	6.5	15
242	Structural Determinants of HIV-1 Reverse Transcriptase Stereoselectivity Towards (Î ²)-L-Deoxy- and Dideoxy-Pyrimidine Nucleoside Triphosphates: Molecular Basis for the Combination of L-Dideoxynucleoside Analogs with Non-nucleoside Inhibitors in Anti HIV Chemotherapy. Nucleosides & Nucleotides, 1999, 18, 795-805.	0.5	2
243	Probing interactions between HIV-1 reverse transcriptase and its DNA substrate with backbone-modified nucleotides. Chemistry and Biology, 1999, 6, 111-116.	6.2	10
244	Pyrrolobenzoxazepinone Derivatives as Non-Nucleoside HIV-1 RT Inhibitors:Â Further Structureâ^'Activity Relationship Studies and Identification of More Potent Broad-Spectrum HIV-1 RT Inhibitors with Antiviral Activity. Journal of Medicinal Chemistry, 1999, 42, 4462-4470.	2.9	40
245	Dual mode of interaction of DNA polymerase ϵ with proliferating cell nuclear antigen in primer binding and DNA synthesis 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 285, 259-267.	2.0	27
246	Solid phase synthesis of 2,6-disubstituted-4(3H)-pyrimidinones targeting HIV-1 reverse transcriptase. Tetrahedron Letters, 1998, 39, 3307-3310.	0.7	19
247	The solution structure of functionally active human proliferating cell nuclear antigen determined by small-angle neutron scattering 1 1Edited by M. F. Moody. Journal of Molecular Biology, 1998, 275, 123-132.	2.0	58
248	Molecular basis for the antiviral and anticancer activities of unnatural L-β-nucleosides. Expert Opinion on Investigational Drugs, 1998, 7, 1285-1300.	1.9	19
249	Mutant DNA polymerase \hat{l}' from thermosensitive Schizosaccharomyces pombe strains display reduced stimulation by proliferating cell nuclear antigen. Biochemical Journal, 1998, 335, 581-588.	1.7	2
250	Phosphorylation of the PCNA Binding Domain of the Large Subunit of Replication Factor C by Ca2+/Calmodulin-Dependent Protein Kinase II Inhibits DNA Synthesisâ€. Biochemistry, 1997, 36, 5300-5310.	1.2	23
251	Resistance to nevirapine of HIV-1 reverse transcriptase mutants: loss of stabilizing interactions and thermodynamic or steric barriers are induced by different single amino acid substitutions. Journal of Molecular Biology, 1997, 274, 738-747.	2.0	101
252	DNA Replication Machinery: Functional Characterization of a Complex Containing DNA Polymerase α, DNA Polymerase δ, and Replication Factor C Suggests an Asymmetric DNA Polymerase Dimerâ€. Biochemistry, 1996, 35, 5764-5777.	1.2	44

#	Article	IF	CITATIONS
253	A conserved domain of the large subunit of replication factor C binds PCNA and acts like a dominant negative inhibitor of DNA replication in mammalian cells EMBO Journal, 1996, 15, 4423-4433.	3.5	88
254	DNA polymerase beta bypasses in vitro a single d(GpG)-cisplatin adduct placed on codon 13 of the HRAS gene Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5356-5360.	3.3	121
255	Stereospecificity of human DNA polymerases α,β,γ,§ and ɛ, HIV-reverse transcriptase, HSV- DNA polymerase, calf thymus terminal transferase andEscherichia coliDNA polymerase I in recognizing D- and L-thymidine 5′-triphosphate as substrate. Nucleic Acids Research, 1995, 23, 2840-2847.	6.5	51
256	DNA polymerase .epsilon. interacts with proliferating cell nuclear antigen in primer recognition and elongation. Biochemistry, 1995, 34, 891-901.	1.2	39
257	Synthesis, Properties, and Pharmacokinetic Studies of N2-Phenylguanine Derivatives as Inhibitors of Herpes Simplex Virus Thymidine Kinases. Journal of Medicinal Chemistry, 1995, 38, 49-57.	2.9	39
258	Lack of stereospecificity of some cellular and viral enzymes involved in the synthesis of deoxyribonucleotides and DNA: Molecular basis for the antiviral activity of unnatural l-β-nucleosides. Biochimie, 1995, 77, 861-867.	1.3	25
259	RFLP-based genetic relationships of Einkorn wheats. Theoretical and Applied Genetics, 1994, 88, 818-823.	1.8	39
260	Identification, partial purification and inhibition by guanine analogues of a novel enzymic activity which phosphorylates guanosine to GMP in the protozoan parasite <i>Eimeria tenella</i> . Biochemical Journal, 1994, 298, 289-294.	1.7	4
261	Kinetic studies with N2-phenylguanines and with l-thymidine indicate that herpes simplex virus type-1 thymidine kinase and thymidylate kinase share a common active site. Biochemical Journal, 1994, 302, 279-282.	1.7	21
262	Lack of stereospecificity of suid pseudorabies virus thymidine kinase. Biochemical Journal, 1993, 294, 381-385.	1.7	16
263	Enzymes of DNA Metabolism in a Patient with the Wiedemann-Rautenstrauch Progeroid Syndrome. Annals of the New York Academy of Sciences, 1992, 663, 440-441.	1.8	2
264	L-Thymidine is phosphorylated by herpes simplex virus type 1 thymidine kinase and inhibits viral growth. Journal of Medicinal Chemistry, 1992, 35, 4214-4220.	2.9	117
265	Quantitative structure-activity relationships of N2-phenylguanines as inhibitors of Herpes simplex virus thymidine kinases. Journal of Medicinal Chemistry, 1992, 35, 2979-2983.	2.9	17
266	Effect of divalent and monovalent cations on calf thymus PCNA-independent DNA polymerase δ and its 3' → 5' exonuclease. FEBS Letters, 1990, 259, 349-352.	1.3	11