Mark P Dodding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1481209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	De novo designed peptides for cellular delivery and subcellular localisation. Nature Chemical Biology, 2022, 18, 999-1004.	8.0	16
2	Molecular mechanism for kinesin-1 direct membrane recognition. Science Advances, 2021, 7, .	10.3	5
3	Kinesin-1 captures RNA cargo in its adaptable coils. Genes and Development, 2021, 35, 937-939.	5.9	8
4	Fragment-linking peptide design yields a high-affinity ligand for microtubule-based transport. Cell Chemical Biology, 2021, 28, 1347-1355.e5.	5.2	7
5	In situ cryo-electron tomography reveals filamentous actin within the microtubule lumen. Journal of Cell Biology, 2020, 219, .	5.2	32
6	Motor–cargo adaptors at the organelle–cytoskeleton interface. Current Opinion in Cell Biology, 2019, 59, 16-23.	5.4	56
7	Structural basis for isoform-specific kinesin-1 recognition of Y-acidic cargo adaptors. ELife, 2018, 7, .	6.0	26
8	Folliculin – A tumor suppressor at the intersection of metabolic signaling and membrane traffic. Small GTPases, 2017, 8, 100-105.	1.6	8
9	SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain binding domain. Journal of Cell Science, 2017, 130, 1637-1651.	2.0	25
10	A small-molecule activator of kinesin-1 drives remodeling of the microtubule network. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13738-13743.	7.1	57
11	The Dynamic Localization of Cytoplasmic Dynein in Neurons Is Driven by Kinesin-1. Neuron, 2016, 90, 1000-1015.	8.1	95
12	Folliculin directs the formation of a Rab34– <scp>RILP</scp> complex to control the nutrientâ€dependent dynamic distribution of lysosomes. EMBO Reports, 2016, 17, 823-841.	4.5	85
13	The light chains of kinesin-1 are autoinhibited. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2418-2423.	7.1	50
14	Backseat drivers: Regulation of dynein motility. Cell Research, 2014, 24, 1385-1386.	12.0	0
15	Vaccinia Virus F11 Promotes Viral Spread by Acting as a PDZ-Containing Scaffolding Protein to Bind Myosin-9A and Inhibit RhoA Signaling. Cell Host and Microbe, 2013, 14, 51-62.	11.0	40
16	Structural Basis for Kinesin-1:Cargo Recognition. Science, 2013, 340, 356-359.	12.6	85
17	Clathrin Potentiates Vaccinia-Induced Actin Polymerization to Facilitate Viral Spread. Cell Host and Microbe, 2012, 12, 346-359.	11.0	44
18	Coupling viruses to dynein and kinesin-1. EMBO Journal, 2011, 30, 3527-3539.	7.8	188

Mark P Dodding

#	Article	IF	CITATIONS
19	A kinesin-1 binding motif in vaccinia virus that is widespread throughout the human genome. EMBO Journal, 2011, 30, 4523-4538.	7.8	86
20	F11-Mediated Inhibition of RhoA Signalling Enhances the Spread of Vaccinia Virus In Vitro and In Vivo in an Intranasal Mouse Model of Infection. PLoS ONE, 2009, 4, e8506.	2.5	53
21	An E2-F12 complex is required for intracellular enveloped virus morphogenesis during vaccinia infection. Cellular Microbiology, 2009, 11, 808-824.	2.1	39
22	Vaccinia-induced epidermal growth factor receptor-MEK signalling and the anti-apoptotic protein F1L synergize to suppress cell death during infection. Cellular Microbiology, 2009, 11, 1208-1218.	2.1	36
23	Nck- and N-WASP-Dependent Actin-Based Motility Is Conserved in Divergent Vertebrate Poxviruses. Cell Host and Microbe, 2009, 6, 536-550.	11.0	46
24	Structure of B-MLV Capsid Amino-terminal Domain Reveals Key Features of Viral Tropism, Gag Assembly and Core Formation. Journal of Molecular Biology, 2008, 376, 1493-1508.	4.2	50
25	TRIM5α Cytoplasmic Bodies Are Highly Dynamic Structures. Molecular Biology of the Cell, 2007, 18, 2102-2111.	2.1	61
26	Trim-Cyclophilin A Fusion Proteins Can Restrict Human Immunodeficiency Virus Type 1 Infection at Two Distinct Phases in the Viral Life Cycle. Journal of Virology, 2006, 80, 4061-4067.	3.4	70
27	Capsid Processing Requirements for Abrogation of Fv1 and Ref1 Restriction. Journal of Virology, 2005, 79, 10571-10577.	3.4	45