
Darius Kuciauskas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1481164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Diode Field on Time-Resolved Photoluminescence of CdTe-Based Solar Cells. IEEE Journal of Photovoltaics, 2022, 12, 501-511.	2.5	4
2	Voltage Loss Comparison in CdSe/CdTe Solar Cells and Polycrystalline CdSeTe Heterostructures. IEEE Journal of Photovoltaics, 2022, 12, 6-10.	2.5	8
3	Understanding what limits the voltage of polycrystalline CdSeTe solar cells. Nature Energy, 2022, 7, 400-408.	39.5	36
4	Largeâ€Area (Ag,Cu)(In,Ga)Se ₂ Thinâ€Film Solar Cells with Increased Bandgap and Reduced Voltage Losses Realized with Bulk Defect Reduction and Frontâ€Grading of the Absorber Bandgap. Solar Rrl, 2022, 6, .	5.8	6
5	Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nature Energy, 2022, 7, 642-651.	39.5	121
6	Identification of Recombination Losses in CdSe/CdTe Solar Cells from Spectroscopic and Microscopic Timeâ€Resolved Photoluminescence. Solar Rrl, 2021, 5, 2000775.	5.8	17
7	Identification of Recombination Losses in CdSe/CdTe Solar Cells from Spectroscopic and Microscopic Timeâ€Resolved Photoluminescence. Solar Rrl, 2021, 5, 2170042.	5.8	2
8	CdTeâ€Based Solar Cells with Variations in Mg Concentration in the MgZnO Emitter. Solar Rrl, 2021, 5, 2100126.	5.8	13
9	Mechanisms for long carrier lifetime in Cd(Se)Te double heterostructures. Applied Physics Letters, 2021, 118, .	3.3	12
10	Simulation App for Time-Resolved Photoluminescence in Thin-Film Solar Cells. , 2021, , .		1
11	Sub-bandgap features in CdSeTe solar cells: Parsing the roles of material properties and cell optics. , 2021, , .		2
12	Transparent MgO for back-contact passivation of CdTe-based solar cells. , 2021, , .		0
13	Numerical Analysis of Time Resolved Photoluminescence for Alumina/Cd(Se,Te) Double Heterostructures. , 2021, , .		0
14	Diverse simulations of time-resolved photoluminescence in thin-film solar cells: A SnO2/CdSeyTe1â^'y case study. Journal of Applied Physics, 2021, 130, .	2.5	11
15	Probing the Origin of the Open Circuit Voltage in Perovskite Quantum Dot Photovoltaics. ACS Nano, 2021, 15, 19334-19344.	14.6	18
16	Radiative Efficiency and Chargeâ€Carrier Lifetimes and Diffusion Length in Polycrystalline CdSeTe Heterostructures. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900606.	2.4	26
17	Growth and Characterization of Arsenic-Doped CdTe1â^'xSex Single Crystals Grown by the Cd-Solvent Traveling Heater Method. Journal of Electronic Materials, 2020, 49, 6971-6976.	2.2	2
18	Defect-mediated metastability and carrier lifetimes in polycrystalline (Ag,Cu)(In,Ga)Se2 absorber materials. Journal of Applied Physics, 2020, 127, .	2.5	14

#	Article	IF	CITATIONS
19	Numerical simulation of high-efficiency, scalable, all-back-contact Cd(Se,Te) solar cells. Journal of Applied Physics, 2020, 127, .	2.5	9
20	Arsenic Doping of Polycrystalline CdSeTe Devices for Microsecond Life-times with High Carrier Concentrations. , 2020, , .		2
21	Simulating the Effect of p-n Junction Fields on TRPL Transients of Thin-Film CdTe Solar Cells. , 2020, , .		1
22	Optical Characterization of Defects in High-efficiency (Ag,Cu)(In,Ga)Se2. , 2020, , .		0
23	Microsecond Carrier Lifetimes in Polycrystalline CdSeTe Heterostructures and in CdSeTe Thin Film Solar Cells. , 2020, , .		6
24	<pre>\$ext{CdSe}_{mathrm{x}}ext{Te}_{1-mathrm{x}}/ext{CdTe}\$ Devices with Reduced Interface Recombination Through Novel Back Contacts and Group-V Doping. , 2020, , .</pre>		1
25	Optical Characterization of Defects in High-efficiency (Ag, Cu)(In, Ga)Se2. , 2020, , .		Ο
26	Calculation of the thermodynamic voltage limit of CdSeTe solar cells. , 2020, , .		1
27	Time-resolved photoluminescence characterization of polycrystalline thin-film solar cells. , 2020, , 191-222.		3
28	Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nature Energy, 2019, 4, 837-845.	39.5	243
29	Recombination and bandgap engineering in CdSeTe/CdTe solar cells. APL Materials, 2019, 7, .	5.1	70
30	Arsenic doped Cd-rich CdTe: equilibrium doping limit and long lifetime for high open-circuit voltage solar cells greater than 900 mV. Applied Physics Express, 2019, 12, 081002.	2.4	6
31	Field Effect in CdSeTe/CdTe Solar Cells with Biased Spectroscopy. , 2019, , .		2
32	Optoelectronic Characterization of Emerging Solar Absorber Cu ₃ AsS ₄ ., 2019,		3
33	Sputtered Aluminum Oxide and p ⁺ Amorphous Silicon Back-Contact for Improved Hole Extraction in Polycrystalline CdSe _x Te _{1-x} and CdTe Photovoltaics. , 2019, , .		2
34	Doping CdSe _x Te _{1-x} /CdTe Graded Absorber Films with Arsenic for Thin-Film Photovoltaics. , 2019, , .		2
35	Buried interface and luminescent coupling analysis with time-resolved two-photon excitation microscopy in II-VI and III-V semiconductor heterostructures. , 2019, , .		0
36	Synthesis of CdSeCdSe _x Te _{1-x} /CdTe for graded solar cells. , 2019, , .		0

#	Article	IF	CITATIONS
37	Sputter-Deposited Oxides for Interface Passivation of CdTe Photovoltaics. IEEE Journal of Photovoltaics, 2018, 8, 587-593.	2.5	89
38	Excitation-dependent carrier lifetime and diffusion length in bulk CdTe determined by time-resolved optical pump-probe techniques. Journal of Applied Physics, 2018, 123, .	2.5	35
39	Doping properties of cadmium-rich arsenic-doped CdTe for application of single crystal solar cell. , 2018, , .		Ο
40	Luminescence methodology to determine grain-boundary, grain-interior, and surface recombination in thin-film solar cells. Journal of Applied Physics, 2018, 124, .	2.5	25
41	Interfaces Between C <roman>d</roman> T <roman>e</roman> and ALD A<roman>l</roman> ₂ O ₃ . IEEE Journal of Photovoltaics, 2018, 8, 1858-1861.	2.5	18
42	Spectroscopic and Microscopic Defect and Carrier-Lifetime Analysis in Cadmium Telluride. IEEE Journal of Photovoltaics, 2018, 8, 1754-1760.	2.5	10
43	Exciton photoluminescence and benign defect complex formation in zinc tin nitride. Materials Horizons, 2018, 5, 823-830.	12.2	41
44	Recombination velocity less than 100 cm/s at polycrystalline Al2O3/CdSeTe interfaces. Applied Physics Letters, 2018, 112, .	3.3	47
45	High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals. Applied Physics Letters, 2018, 112, .	3.3	33
46	Time-resolved correlative optical microscopy of charge-carrier transport, recombination, and space-charge fields in CdTe heterostructures. Applied Physics Letters, 2017, 110, .	3.3	18
47	Optically induced metastability in Cu(In,Ga)Se2. Scientific Reports, 2017, 7, 13788.	3.3	18
48	Self-compensation in arsenic doping of CdTe. Scientific Reports, 2017, 7, 4563.	3.3	59
49	In-situ curvature monitoring and X-ray diffraction study of InGaAsP/InGaP quantum wells. Journal of Crystal Growth, 2017, 475, 171-177.	1.5	5
50	Separating grain-boundary and bulk recombination with time-resolved photoluminescence microscopy. Applied Physics Letters, 2017, 111, .	3.3	14
51	Identification of the limiting factors for high-temperature GaAs, GaInP, and AlGaInP solar cells from device and carrier lifetime analysis. Journal of Applied Physics, 2017, 122, .	2.5	29
52	Doping properties of cadmium-rich arsenic-doped CdTe single crystals: Evidence of metastable AX behavior. Applied Physics Letters, 2017, 111, .	3.3	27
53	Notice of Removal Interface characterization of single-crystal CdTe solar cells with Voc > 950mV. , 2017, , .		0
54	Group-V doping impact on Cd-rich CdTe single crystals grown by traveling-heater method. , 2017, , .		0

4

#	Article	IF	CITATIONS
55	Notice of Removal Relationship of open-circuit voltage, bulk CdTe properties, and dopant type. , 2017, , .		0
56	II-VI Material Integration With Silicon for Detector and PV Applications. MRS Advances, 2016, 1, 3391-3402.	0.9	5
57	Wild band edges: The role of bandgap grading and band-edge fluctuations in high-efficiency chalcogenide devices. , 2016, , .		11
58	Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy. Applied Physics Letters, 2016, 109, .	3.3	16
59	Energy conversion properties of ZnSiP <inf>2</inf> , a lattice-matched material for silicon-based tandem photovoltaics. , 2016, , .		2
60	Beneficial effect of post-deposition treatment in high-efficiency Cu(In,Ga)Se2 solar cells through reduced potential fluctuations. Journal of Applied Physics, 2016, 120, .	2.5	75
61	Defect states in copper indium gallium selenide solar cells from two-wavelength excitation photoluminescence spectroscopy. , 2016, , .		0
62	Investigation of carrier dynamics in InAs/GaAsSb quantum dots with different silicon delta-doping levels. Semiconductor Science and Technology, 2016, 31, 125010.	2.0	0
63	Analysis of Recombination in CdTe Heterostructures With Time-Resolved Two-Photon Excitation Microscopy. IEEE Journal of Photovoltaics, 2016, 6, 1581-1586.	2.5	6
64	Relationship of Open-Circuit Voltage to CdTe Hole Concentration and Lifetime. IEEE Journal of Photovoltaics, 2016, 6, 1641-1644.	2.5	30
65	Interface Characterization of Single-Crystal CdTe Solar Cells With VOC > 950 mV. IEEE Journal of Photovoltaics, 2016, 6, 1650-1653.	2.5	10
66	CdTe solar cells with open-circuit voltage breaking the $1\hat{a}\in$ ‰V barrier. Nature Energy, 2016, 1, .	39.5	307
67	Solar energy conversion properties and defect physics of ZnSiP ₂ . Energy and Environmental Science, 2016, 9, 1031-1041.	30.8	49
68	Recombination Analysis in Cadmium Telluride Photovoltaic Solar Cells With Photoluminescence Spectroscopy. IEEE Journal of Photovoltaics, 2016, 6, 313-318.	2.5	43
69	Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe. APL Materials, 2016, 4, .	5.1	52
70	Fabrication of single-crystal solar cells from phosphorous-doped CdTe wafer. , 2015, , .		11
71	Effects of stoichiometry in undoped CdTe heteroepilayers on Si. , 2015, , .		0
72	Development of Two-photon excitation time-resolved photoluminescence microscopy for lifetime and defect imaging in thin film photovoltaic materials and devices. , 2015, , .		4

#	Article	IF	CITATIONS
73	Single crystal growth and phase stability of photovoltaic grade ZnSiP2 by flux technique. , 2015, , .		5
74	Two dimensional numerical simulations of carrier dynamics during time-resolved photoluminescence decays in two-photon microscopy measurements in semiconductors. Journal of Applied Physics, 2015, 118, 045709.	2.5	19
75	Reducing interface recombination for Cu(In,Ga)Se2 by atomic layer deposited buffer layers. Applied Physics Letters, 2015, 107, .	3.3	19
76	Intrinsic surface passivation of CdTe. Journal of Applied Physics, 2015, 118, .	2.5	106
77	The impact of Cu on recombination in high voltage CdTe solar cells. Applied Physics Letters, 2015, 107, .	3.3	34
78	Optoelectronic investigation of Sb-doped Cu(In,Ga)Se2. , 2015, , .		1
79	Quantitative determination of grain boundary recombination velocity in CdTe by combination of cathodoluminescence measurements and numerical simulations. , 2015, , .		2
80	Optoelectronic Investigation of Sb-Doped Cu(In,Ga)Se ₂ . IEEE Journal of Photovoltaics, 2015, 5, 1769-1774.	2.5	8
81	Photoluminescence of Crystalline cDtE double heterostructures grown by MBE. , 2015, , .		Ο
82	Opto-electronic characterization of CdTe solar cells from TCO to back contact with nano-scale CL probe. , 2015, , .		1
83	Impact of delta-doping position on photoluminescence in type-II InAs/GaAsSb quantum dots. Semiconductor Science and Technology, 2015, 30, 035006.	2.0	1
84	Surface Passivation of CdTe Single Crystals. IEEE Journal of Photovoltaics, 2015, 5, 382-385.	2.5	15
85	Fiber-fed time-resolved photoluminescence for reduced process feedback time on thin-film photovoltaics. Review of Scientific Instruments, 2015, 86, 013907.	1.3	19
86	Time-resolved recombination analysis in kesterite polycrystalline thin films and photovoltaic devices with one-photon and two-photon excitation. Solar Energy Materials and Solar Cells, 2015, 136, 100-105.	6.2	11
87	Effects of deposition termination on Cu2ZnSnSe4 device characteristics. Thin Solid Films, 2015, 582, 184-187.	1.8	29
88	Minority-Carrier Lifetime and Surface Recombination Velocity in Single-Crystal CdTe. IEEE Journal of Photovoltaics, 2015, 5, 366-371.	2.5	52
89	Charge-carrier dynamics in polycrystalline thin-film CuIn1â^'xGaxSe2 photovoltaic devices after pulsed laser excitation: Interface and space-charge region analysis. Journal of Applied Physics, 2015, 117, .	2.5	15
90	Dual-sensor technique for characterization of carrier lifetime decay transients in semiconductors. Journal of Applied Physics, 2014, 116, 214510.	2.5	5

#	Article	IF	CITATIONS
91	Cathodoluminescence Analysis of Grain Boundaries and Grain Interiors in Thin-Film CdTe. IEEE Journal of Photovoltaics, 2014, 4, 1671-1679.	2.5	25
92	Cd-rich and Te-rich low-temperature photoluminescence in cadmium telluride. Applied Physics Letters, 2014, 104, 092109.	3.3	25
93	Advances in control of doping and lifetime in single-crystal and polycrystalline CdTe. , 2014, , .		4
94	CdTe single-crystal heterojunction photovoltaic cells. , 2014, , .		2
95	Minority carrier lifetimes in 1.0-eV p-In <inf>0.27</inf> Ca <inf>0.73</inf> As layers grown on GaAs substrates. , 2014, , .		Ο
96	The role of drift, diffusion, and recombination in timeâ€resolved photoluminescence of CdTe solar cells determined through numerical simulation. Progress in Photovoltaics: Research and Applications, 2014, 22, 1138-1146.	8.1	89
97	A recombination analysis of Cu(In,Ga)Se2 solar cells with low and high Ga compositions. Solar Energy Materials and Solar Cells, 2014, 124, 143-149.	6.2	130
98	Investigation of combinatorial coevaporated thin film Cu2ZnSnS4. I. Temperature effect, crystalline phases, morphology, and photoluminescence. Journal of Applied Physics, 2014, 115, .	2.5	44
99	Simultaneous Measurement of Minority-Carrier Lifetime in Single-Crystal CdTe Using Three Transient Decay Techniques. IEEE Journal of Photovoltaics, 2014, 4, 1295-1300.	2.5	24
100	Dual sensor technique for the advanced characterization of recombination parameters in photovoltaic materials. , 2014, , .		0
101	Charge-carrier transport and recombination in heteroepitaxial CdTe. Journal of Applied Physics, 2014, 116, .	2.5	39
102	Structural and optical properties of multi-stack InAs/GaAsSb quantum dots with different Sb composition. , 2014, , .		0
103	Single-crystal CdTe solar cells with Voc greater than 900 mV. Applied Physics Letters, 2014, 105, .	3.3	42
104	Effect of silicon delta-doping density on optical properties of type-II InAs/GaAsSb quantum dots. Journal of Crystal Growth, 2014, 406, 68-71.	1.5	2
105	Research strategies toward improving thin-film CdTe photovoltaic devices beyond 20% conversion efficiency. Solar Energy Materials and Solar Cells, 2013, 119, 149-155.	6.2	92
106	Dependence of the Minority-Carrier Lifetime on the Stoichiometry of CdTe Using Time-Resolved Photoluminescence and First-Principles Calculations. Physical Review Letters, 2013, 111, 067402.	7.8	124
107	Electrical Characterization of Cu Composition Effects in CdS/CdTe Thin-Film Solar Cells With a ZnTe:Cu Back Contact. IEEE Journal of Photovoltaics, 2013, 3, 1095-1099.	2.5	28
108	Minority Carrier Lifetime Analysis in the Bulk of Thin-Film Absorbers Using Subbandgap (Two-Photon) Excitation. IEEE Journal of Photovoltaics, 2013, 3, 1319-1324.	2.5	91

4

#	Article	IF	CITATIONS
109	Kesterite Successes, Ongoing Work, and Challenges: A Perspective From Vacuum Deposition. IEEE Journal of Photovoltaics, 2013, 3, 439-445.	2.5	78
110	Charge carrier dynamics and recombination in graded band gap CuIn1â^'xGaxSe2 polycrystalline thin-film photovoltaic solar cell absorbers. Journal of Applied Physics, 2013, 114, .	2.5	37
111	Pathways toward higher performance CdS/CdTe devices: Te exposure of CdTe surface before ZnTe:Cu/Ti contacting. Thin Solid Films, 2013, 535, 237-240.	1.8	15
112	Effects of Internal Luminescence and Internal Optics on \$V_{f oc}\$ and \$J_{f sc}\$ of IIIV Solar Cells. IEEE Journal of Photovoltaics, 2013, 3, 1437-1442.	2.5	77
113	Indications of short minority-carrier lifetime in kesterite solar cells. Journal of Applied Physics, 2013, 114, 084507.	2.5	73
114	Development of CdTe on Si Heteroepilayers for Controlled PV Material and Device Studies. Materials Research Society Symposia Proceedings, 2013, 1538, 243-248.	0.1	3
115	Spectrally and time resolved photoluminescence analysis of the CdS/CdTe interface in thin-film photovoltaic solar cells. Applied Physics Letters, 2013, 102, .	3.3	35
116	Effects of sodium incorporation in Co-evaporated Cu2ZnSnSe4 thin-film solar cells. Applied Physics Letters, 2013, 102, .	3.3	125
117	Electrical characterization of Cu composition effects in CdS/CdTe thin-film solar cells with a ZnTe:Cu back contact. , 2013, , .		0
118	Kesterite successes, ongoing work, and challenges: A perspective from vacuum deposition. , 2013, , .		0
119	Oxygen incorporation during fabrication of substrate CdTe photovoltaic devices. , 2012, , .		7
120	Electrical characterization of Cu composition effects in CdS/CdTe thin-film solar cells with a ZnTe:Cu back contact. , 2012, , .		2
121	Response of CdS/CdTe devices to Te exposure of back contact. , 2012, , .		1
122	Development of substrate structure CdTe photovoltaic devices with performance exceeding 10%. , 2012, , .		12
123	Observation of band alignment transition in InAs/GaAsSb quantum dots by photoluminescence. Journal of Applied Physics, 2012, 111, .	2.5	24
124	The role of Sb compositions on the properties of InAs/GaAsSb quantum dots (QDs). Proceedings of SPIE, 2012, , .	0.8	0
125	Optical-fiber-based, time-resolved photoluminescence spectrometer for thin-film absorber characterization and analysis of TRPL data for CdS/CdTe interface. , 2012, , .		21

126 Kesterite successes, ongoing work, and challenges: A perspective from vacuum deposition. , 2012, , .

#	Article	IF	CITATIONS
127	Impact of interface recombination on time resolved photoluminescence (TRPL) decays in CdTe solar cells (numerical simulation analysis). , 2012, , .		17
128	The effect of CdTe growth temperature and ZnTe:Cu contacting conditions on CdTe device performance. , 2012, , .		10
129	Co-evaporated Cu2ZnSnSe4 films and devices. Solar Energy Materials and Solar Cells, 2012, 101, 154-159.	6.2	582
130	CdS/CdTe solar cells containing directly-deposited CdS <inf>x</inf> Te <inf>1−x</inf> alloy layers. , 2011, , .		2
131	Comparison of minority carrier lifetime measurements in superstrate and substrate CdTe PV devices. , 2011, , .		7
132	CdTe solar cell with industrial Al:ZnO on soda-lime glass. Thin Solid Films, 2011, 519, 7142-7145.	1.8	28
133	Removal of stacking faults in Ge grown on Si through nanoscale openings in chemical SiO2. Thin Solid Films, 2011, 519, 7664-7671.	1.8	1
134	Detection of the third transition of InAs/GaAsSb quantum dots. , 2011, , .		0
135	Influence of damp heat on the electrical, optical, and morphological properties of encapsulated CuInGaSe <inf>2</inf> devices. , 2011, , .		2
136	Doping-dependent device functionality of InP/InAlGaAs long-wavelength light-emitting transistors. Applied Physics Letters, 2011, 99, 103502.	3.3	2
137	CdS _x Te ₁ - _x Alloying in CdS/CdTe Solar Cells. Materials Research Society Symposia Proceedings, 2011, 1324, 63.	0.1	7
138	2.0–2.1 eV Ga <inf>x</inf> In <inf>1−x</inf> P solar cells grown on relaxed GaAsP step grades. , 2010, , .		3
139	Determination of a Sb composition in InAs/GaAsSb for negligible valence band offset. , 2010, , .		3
140	Combinatorial study of thin-film Cu <inf>2</inf> ZnSnS <inf>4</inf> synthesis via metal precursor sulfurization. , 2010, , .		5
141	Exciton Annihilation and Energy Transfer in Self-Assembled Peptideâ `Porphyrin Complexes Depends on Peptide Secondary Structure. Journal of Physical Chemistry B, 2010, 114, 16029-16035.	2.6	25
142	Self-Assembly of Peptideâ `Porphyrin Complexes Leads to pH-dependent Excitonic Coupling. Journal of Physical Chemistry B, 2009, 113, 14439-14447.	2.6	44
143	Contrasting Fe(III) Tetrakis(4-hydroxyphenyl)porphyrin Excited State Dynamics in Solution and Solid States. Journal of Physical Chemistry C, 2008, 112, 1700-1704.	3.1	12
144	Driving Force and Electronic Coupling Effects on Photoinduced Electron Transfer in a Fullerene-based Molecular Triad¶. Photochemistry and Photobiology, 2007, 72, 598-611.	2.5	8

#	Article	IF	CITATIONS
145	Charge Transfer Enhances Two-Photon Absorption in Transition Metal Porphyrins. Journal of the American Chemical Society, 2006, 128, 3902-3903.	13.7	56
146	Optical susceptibilities of supported indium tin oxide thin films. Journal of Applied Physics, 2006, 100, 113123.	2.5	23
147	Phospholipid Bilayer Free Volume Analysis Employing the Thermal Ring-Closing Reaction of Merocyanine Molecular Switches. Journal of Physical Chemistry B, 2006, 110, 22796-22803.	2.6	18
148	Isomerization Dynamics of Photochromic Spiropyran Molecular Switches in Phospholipid Bilayers. Journal of Physical Chemistry B, 2005, 109, 21893-21899.	2.6	28
149	Excited-State Dynamics of Spiropyran-Derived Merocyanine Isomers. Journal of Physical Chemistry B, 2005, 109, 22186-22191.	2.6	80
150	Second Hyperpolarizability of Ethynyl-Linked Azobenzene Molecular Wires. Journal of Physical Chemistry B, 2005, 109, 21496-21498.	2.6	18
151	Nonlinear Optical Spectroscopic Studies of Energy Transfer in Phospholipid Bilayer Liposomes Embedded with Porphyrin Sensitizers. Journal of Physical Chemistry B, 2004, 108, 15376-15384.	2.6	10
152	Charge-Transfer States Determine Iron Porphyrin Film Third-Order Nonlinear Optical Properties in the near-IR Spectral Region. Journal of Physical Chemistry B, 2004, 108, 12016-12023.	2.6	51
153	Photoinduced electron transfer in a symmetrical diporphyrin–fullerene triad. Physical Chemistry Chemical Physics, 2004, 6, 5509-5515.	2.8	22
154	Characterization of the Giant Transient Dipole Generated by Photoinduced Electron Transfer in a Caroteneâ^Porphyrinâ^Fullerene Molecular Triad. Journal of Physical Chemistry A, 2003, 107, 7567-7573.	2.5	48
155	Ultrafast Degenerate Four Wave Mixing Studies of Third-Order Nonlinearities in Conjugated Organic Polymers Containing Azo Groups and Alkynyl Linkages in the Polymer Backbone. Journal of Physical Chemistry B, 2003, 107, 1559-1566.	2.6	19
156	Effects of Bridging Ligands on the Currentâ^'Potential Behavior and Interfacial Kinetics of Ruthenium-Sensitized Nanocrystalline TiO2Photoelectrodesâ€. Journal of Physical Chemistry A, 2003, 107, 3379-3383.	2.5	63
157	Transient Absorption Spectroscopy of Ruthenium and Osmium Polypyridyl Complexes Adsorbed onto Nanocrystalline TiO2 Photoelectrodes. Journal of Physical Chemistry B, 2002, 106, 9347-9358.	2.6	191
158	Ultrafast Energy Transfer from a Carotenoid to a Chlorin in a Simple Artificial Photosynthetic Antenna. Journal of Physical Chemistry B, 2002, 106, 9424-9433.	2.6	46
159	Electron Transfer Dynamics in Nanocrystalline Titanium Dioxide Solar Cells Sensitized with Ruthenium or Osmium Polypyridyl Complexes. Journal of Physical Chemistry B, 2001, 105, 392-403.	2.6	276
160	Driving Force and Electronic Coupling Effects on Photoinduced Electron Transfer in a Fullerene-based Molecular Triad¶. Photochemistry and Photobiology, 2000, 72, 598.	2.5	38
161	Photoinduced Electron Transfer in Carotenoporphyrinâ~'Fullerene Triads:Â Temperature and Solvent Effects. Journal of Physical Chemistry B, 2000, 104, 4307-4321.	2.6	167
162	An Artificial Photosynthetic Antenna-Reaction Center Complex. Journal of the American Chemical Society, 1999, 121, 8604-8614.	13.7	336

#	ARTICLE	IF	CITATIONS
163	Mimicry of carotenoid photoprotection in artificial photosynthetic reaction centers: triplet-triplet energy transfer by a relay mechanism. Journal of Photochemistry and Photobiology B: Biology, 1998, 43, 209-216.	3.8	70
164	Magnetic Switching of Charge Separation Lifetimes in Artificial Photosynthetic Reaction Centers. Journal of the American Chemical Society, 1998, 120, 10880-10886.	13.7	115
165	EPR Investigation of Photoinduced Radical Pair Formation and Decay to a Triplet State in a Caroteneâ° Porphyrinâ 'Fullerene Triad. Journal of the American Chemical Society, 1998, 120, 4398-4405.	13.7	180
166	Dynamics of Photoinduced Electron Transfer in a Carotenoidâ^'Porphyrinâ^'Dinitronaphthalenedicarboximide Molecular Triad. Journal of Physical Chemistry B, 1997, 101, 5214-5223.	2.6	42
167	Structural Effects on Photoinduced Electron Transfer in Carotenoidâ^'Porphyrinâ^'Quinone Triads. Journal of Physical Chemistry B, 1997, 101, 429-440.	2.6	77
168	Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Caroteneâ^'Porphyrinâ^'Fullerene Triad. Journal of the American Chemical Society, 1997, 119, 1400-1405.	13.7	356
169	Energy and Photoinduced Electron Transfer in Porphyrinâ^'Fullerene Dyads. The Journal of Physical Chemistry, 1996, 100, 15926-15932.	2.9	336
170	Singletâ^'Singlet Annihilation and Local Heating in FMO Complexes. The Journal of Physical Chemistry, 1996, 100, 17950-17956.	2.9	33