Benjamin H Durham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1480694/publications.pdf

Version: 2024-02-01

61 papers 4,873 citations

35 h-index 59 g-index

62 all docs

62 docs citations

62 times ranked 7041 citing authors

#	Article	IF	Citations
1	ALK-positiveÂhistiocytosis: a new clinicopathologic spectrum highlighting neurologic involvement and responses to ALK inhibition. Blood, 2022, 139, 256-280.	0.6	60
2	<i>RACGAP1</i> variants in a sporadic case of CDA III implicate the dysfunction of centralspindlin as the basis of the disease. Blood, 2022, 139, 1413-1418.	0.6	9
3	Mechanisms of Resistance to Noncovalent Bruton's Tyrosine Kinase Inhibitors. New England Journal of Medicine, 2022, 386, 735-743.	13.9	87
4	First report of bilateral breast-implant associated anaplastic large cell lymphoma caused by identical T-cell clone. Leukemia and Lymphoma, 2022, 63, 2747-2750.	0.6	2
5	Minor intron retention drives clonal hematopoietic disorders and diverse cancer predisposition. Nature Genetics, 2021, 53, 707-718.	9.4	61
6	Histiocytosis and the nervous system: from diagnosis to targeted therapies. Neuro-Oncology, 2021, 23, 1433-1446.	0.6	33
7	Pharmacologic modulation of RNA splicing enhances anti-tumor immunity. Cell, 2021, 184, 4032-4047.e31.	13.5	131
8	Mutant SF3B1 promotes AKT- and NF-κB–driven mammary tumorigenesis. Journal of Clinical Investigation, 2021, 131, .	3.9	22
9	MAP-Kinase-Driven Hematopoietic Neoplasms: A Decade of Progress in the Molecular Age. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a034892.	2.9	17
10	MicroRNA-15a-5p acts as a tumor suppressor in histiocytosis by mediating CXCL10-ERK-LIN28a-let-7 axis. Leukemia, 2021, , .	3. 3	3
11	Erdheim-Chester disease with concomitant Rosai-Dorfman like lesions: a distinct entity mainly driven by <i>MAP2K1</i> . Haematologica, 2020, 105, e5-e8.	1.7	34
12	PRMT5 Inhibition Modulates E2F1 Methylation and Gene-Regulatory Networks Leading to Therapeutic Efficacy in JAK2V617F-Mutant MPN. Cancer Discovery, 2020, 10, 1742-1757.	7.7	55
13	The Contribution of MicroRNAs to the Inflammatory and Neoplastic Characteristics of Erdheim–Chester Disease. Cancers, 2020, 12, 3240.	1.7	5
14	Neurologic and oncologic features of Erdheim–Chester disease: a 30-patient series. Neuro-Oncology, 2020, 22, 979-992.	0.6	31
15	Erdheim-Chester disease: consensus recommendations for evaluation, diagnosis, and treatment in the molecular era. Blood, 2020, 135, 1929-1945.	0.6	191
16	<i>ZRSR2</i> Mutation Induced Minor Intron Retention Drives MDS and Diverse Cancer Predisposition Via Aberrant Splicing of <i>LZTR1</i> Blood, 2020, 136, 10-11.	0.6	1
17	Cohesin Members Stag1 and Stag2 Display Distinct Roles in Chromatin Accessibility and Topological Control of HSC Self-Renewal and Differentiation. Cell Stem Cell, 2019, 25, 682-696.e8.	5.2	106
18	A Gain-of-Function p53-Mutant Oncogene Promotes Cell Fate Plasticity and Myeloid Leukemia through the Pluripotency Factor FOXH1. Cancer Discovery, 2019, 9, 962-979.	7.7	58

#	Article	IF	Citations
19	Molecular Profiling of Tumor Tissue and Plasma Cell-Free DNA from Patients with Non-Langerhans Cell Histiocytosis. Molecular Cancer Therapeutics, 2019, 18, 1149-1157.	1.9	26
20	Efficacy of MEK inhibition in patients with histiocytic neoplasms. Nature, 2019, 567, 521-524.	13.7	222
21	Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms. Nature Medicine, 2019, 25, 1839-1842.	15.2	122
22	An activating mutation of the NSD2 histone methyltransferase drives oncogenic reprogramming in acute lymphocytic leukemia. Oncogene, 2019, 38, 671-686.	2.6	39
23	Molecular characterization of the histiocytoses: Neoplasia of dendritic cells and macrophages. Seminars in Cell and Developmental Biology, 2019, 86, 62-76.	2.3	54
24	PRMT5 Inhibition Modulates E2F1 Methylation and Gene Regulatory Networks Leading to Therapeutic Efficacy in JAK2VF Mutant MPN. Blood, 2019, 134, 473-473.	0.6	4
25	Stag2 Regulates Hematopoietic Differentiation and Self-Renewal through Alterations in Gene Expression and Topological Control. Blood, 2019, 134, 279-279.	0.6	0
26	Single-agent dabrafenib for <i>BRAF</i> ^{V600E} -mutated histiocytosis. Haematologica, 2018, 103, e177-e180.	1.7	40
27	Consensus recommendations for the diagnosis and clinical management of Rosai-Dorfman-Destombes disease. Blood, 2018, 131, 2877-2890.	0.6	335
28	Nutritional Support from the Intestinal Microbiota Improves Hematopoietic Reconstitution after Bone Marrow Transplantation in Mice. Cell Host and Microbe, 2018, 23, 447-457.e4.	5.1	86
29	Novel activating BRAF fusion identifies a recurrent alternative mechanism for ERK activation in pediatric Langerhans cell histiocytosis. Pediatric Blood and Cancer, 2018, 65, e26699.	0.8	16
30	Vemurafenib for <i>BRAF</i> V600–Mutant Erdheim-Chester Disease and Langerhans Cell Histiocytosis. JAMA Oncology, 2018, 4, 384.	3.4	280
31	The histopathology of Erdheim–Chester disease: a comprehensive review of a molecularly characterized cohort. Modern Pathology, 2018, 31, 581-597.	2.9	102
32	Erdheim-Chester Disease., 2018,, 313-338.		2
33	Impaired hematopoiesis and leukemia development in mice with a conditional knock-in allele of a mutant splicing factor gene <i>U2af1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10437-E10446.	3.3	59
34	Genetic and epigenetic evolution as a contributor to WT1-mutant leukemogenesis. Blood, 2018, 132, 1265-1278.	0.6	39
35	Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations. Cancer Cell, 2018, 34, 225-241.e8.	7.7	162
36	Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies. Journal of Clinical Investigation, 2018, 128, 3819-3825.	3.9	45

#	Article	IF	CITATIONS
37	Activating Mutations in CSF1R and Additional Receptor Tyrosine Kinases in Sporadic and Familial Histiocytic Neoplasms. Blood, 2018, 132, 49-49.	0.6	10
38	The Role of microRNAs in the Pathogenesis of Erdheim-Chester Disease and Their Potential Use As Biomarkers for Diagnosis and Prognosis of the Disease. Blood, 2018, 132, 2397-2397.	0.6	1
39	Aid is a key regulator of myeloid/erythroid differentiation and DNA methylation in hematopoietic stem/progenitor cells. Blood, 2017, 129, 1779-1790.	0.6	18
40	ASXL2 is essential for haematopoiesis and acts as a haploinsufficient tumour suppressor in leukemia. Nature Communications, 2017, 8, 15429.	5.8	55
41	Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults. Blood, 2017, 130, 167-175.	0.6	136
42	Robust patient-derived xenografts of MDS/MPN overlap syndromes capture the unique characteristics of CMML and JMML. Blood, 2017, 130, 397-407.	0.6	112
43	Functional evidence for derivation of systemic histiocytic neoplasms from hematopoietic stem/progenitor cells. Blood, 2017, 130, 176-180.	0.6	98
44	A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature, 2017, 549, 389-393.	13.7	144
45	<i>miR-99</i> regulates normal and malignant hematopoietic stem cell self-renewal. Journal of Experimental Medicine, 2017, 214, 2453-2470.	4.2	44
46	Genomic analysis of hairy cell leukemia identifies novel recurrent genetic alterations. Blood, 2017, 130, 1644-1648.	0.6	82
47	High prevalence of myeloid neoplasms in adults with non–Langerhans cell histiocytosis. Blood, 2017, 130, 1007-1013.	0.6	98
48	The clinical spectrum of Erdheim-Chester disease: an observational cohort study. Blood Advances, 2017, 1, 357-366.	2.5	163
49	Characterization of Ntrk fusions and Therapeutic Response to Ntrk Inhibition in Hematologic Malignancies. Blood, 2017, 130, 794-794.	0.6	0
50	Histiocytic neoplasms in the era of personalized genomic medicine. Current Opinion in Hematology, 2016, 23, 416-425.	1.2	37
51	MSI2 is required for maintaining activated myelodysplastic syndrome stem cells. Nature Communications, 2016, 7, 10739.	5.8	27
52	Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nature Medicine, 2016, 22, 672-678.	15.2	301
53	Anakinra as efficacious therapy for 2 cases of intracranial Erdheim-Chester disease. Blood, 2016, 128, 1896-1898.	0.6	24
54	DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nature Medicine, 2016, 22, 1488-1495.	15.2	195

#	Article	IF	CITATIONS
55	Reply to "Uveal melanoma cells are resistant to EZH2 inhibition regardless of BAP1 status". Nature Medicine, 2016, 22, 578-579.	15.2	7
56	Diverse and Targetable Kinase Alterations Drive Histiocytic Neoplasms. Cancer Discovery, 2016, 6, 154-165.	7.7	372
57	Sonographic appearance of a dermoid cyst (mature cystic teratoma) of the spleen. Journal of Clinical Ultrasound, 2015, 43, 132-134.	0.4	2
58	Loss of BAP1 function leads to EZH2-dependent transformation. Nature Medicine, 2015, 21, 1344-1349.	15.2	297
59	Impact of surgery, radiation and systemic therapy on the outcomes of patients with dendritic cell and histiocytic sarcomas. European Journal of Cancer, 2015, 51, 2413-2422.	1.3	79
60	Rapidly Progressive Primary Leptomeningeal Atypical Teratoid/Rhabdoid Tumor. Journal of Child Neurology, 2012, 27, 1597-1601.	0.7	6
61	Resistant Fusarium Keratitis Progressing to Endophthalmitis. Eye and Contact Lens, 2012, 38, 331-335.	0.8	19