Bo Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1480670/publications.pdf

Version: 2024-02-01

687363 713466 26 436 13 21 citations h-index g-index papers 26 26 26 457 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Exploring breath biomarkers in BLM-induced pulmonary fibrosis mice with associative ionization time-of-flight mass spectrometry. Talanta, 2022, 239, 123120.	5.5	7
2	Photoinduced Associative Ionization Time-of-Flight Mass Spectrometry for the Sensitive Determination of Monoterpenes. Analytical Letters, 2022, 55, 2170-2184.	1.8	2
3	An ultrasensitive SPI/PAI ion source based on a high-flux VUV lamp and its applications for the online mass spectrometric detection of sub-pptv sulfur ethers. Talanta, 2022, 247, 123558.	5.5	4
4	Ultrasensitive detection of trace chemical warfare agent-related compounds by thermal desorption associative ionization time-of-flight mass spectrometry. Talanta, 2021, 235, 122788.	5.5	13
5	Emerging nonâ€'invasive detection methodologies for lung cancer (Review). Oncology Letters, 2020, 19, 3389-3399.	1.8	7
6	Characterization of trace aerosol compositions produced during the OH radical-initiated photooxidation of \hat{l}^2 -pinene. Atmospheric Environment, 2019, 211, 1-5.	4.1	4
7	Kinetic Understanding of the Ultrahigh Ionization Efficiencies (up to 28%) of Excited-State CH ₂ Cl ₂ -Induced Associative Ionization: A Case Study with Nitro Compounds. Analytical Chemistry, 2019, 91, 5605-5612.	6.5	13
8	Comparison of secondary organic aerosol (SOA) formation during o-, m-, and p-xylene photooxidation. Environmental Pollution, 2019, 245, 20-28.	7.5	20
9	Ultrasensitive detection of volatile aldehydes with chemi-ionization-coupled time-of-flight mass spectrometry. Talanta, 2019, 194, 888-894.	5.5	11
10	Formation mechanism of secondary organic aerosol from ozonolysis of gasoline vehicle exhaust. Environmental Pollution, 2018, 234, 960-968.	7. 5	18
11	A rapid detection method for policy-sensitive amines real-time supervision. Talanta, 2018, 178, 636-643.	5.5	15
12	Characterization of secondary organic aerosol from photo-oxidation of gasoline exhaust and specific sources of major components. Environmental Pollution, 2018, 232, 65-72.	7. 5	22
13	Vacuum-Ultraviolet-Excited and CH ₂ Cl ₂ /H ₂ O-Amplified Ionization-Coupled Mass Spectrometry for Oxygenated Organics Analysis. Analytical Chemistry, 2018, 90, 1301-1308.	6.5	31
14	Rapid detection of taste and odor compounds in water using the newly invented chemi-ionization technique coupled with time-of-flight mass spectrometry. Analytica Chimica Acta, 2018, 1035, 119-128.	5.4	13
15	Doping-assisted low-pressure photoionization mass spectrometry for the real-time detection of lung cancer-related volatile organic compounds. Talanta, 2017, 165, 98-106.	5.5	20
16	Application of VUV-PIMS coupled with GC-MS in chemical characterization, identification and comparative analysis of organic components in both vehicular-derived SOA and haze particles. Atmospheric Environment, 2017, 164, 250-258.	4.1	9
17	Protonation enhancement by dichloromethane doping in low-pressure photoionization. Scientific Reports, 2016, 6, 36820.	3.3	21
18	Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry. Talanta, 2016, 156-157, 191-195.	5.5	13

#	Article	IF	CITATION
19	Gas-Phase Reactions of Methoxyphenols with NO ₃ Radicals: Kinetics, Products, and Mechanisms. Journal of Physical Chemistry A, 2016, 120, 1213-1221.	2.5	25
20	Effect of the blocked-sites phenomenon on the heterogeneous reaction of pyrene with N ₂ O ₅ /NO ₃ /NO ₂ . RSC Advances, 2016, 6, 10358-10364.	3.6	3
21	Theoretical study on the atmospheric transformation mechanism of pirimiphos-methyl initiated by O3. Chemosphere, 2015, 138, 966-972.	8.2	7
22	Heterogeneous reactions of particulate benzo[b]fluoranthene and benzo[k]fluoranthene with NO3 radicals. Chemosphere, 2014, 99, 34-40.	8.2	10
23	Kinetic Studies of Heterogeneous Reactions of Polycyclic Aromatic Hydrocarbon Aerosols with NO ₃ Radicals. Environmental Science & Environmental & Environme	10.0	43
24	Nitration of particle-associated PAHs and their derivatives (nitro-, oxy-, and hydroxy-PAHs) with NO3 radicals. Atmospheric Environment, 2011, 45, 2515-2521.	4.1	71
25	Heterogeneous Reactivity of Suspended Pirimiphos-Methyl Particles with Ozone. Environmental Science &	10.0	24
26	Ozonation of trifluralin particles: An experimental investigation with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer. Journal of Hazardous Materials, 2009, 172, 390-394.	12.4	10