Samira Gharehkhani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1480640/publications.pdf Version: 2024-02-01

		331259	433756
32	2,453	21	31
papers	citations	h-index	g-index
32	32	32	3039
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Science and Technology of Advanced Materials, 2015, 16, 033502.	2.8	502
2	Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer. Energy Conversion and Management, 2015, 100, 419-428.	4.4	273
3	A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids. Energy, 2015, 89, 1065-1086.	4.5	226
4	Basic effects of pulp refining on fiber properties—A review. Carbohydrate Polymers, 2015, 115, 785-803.	5.1	225
5	Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. International Communications in Heat and Mass Transfer, 2016, 77, 15-21.	2.9	161
6	An experimental study on viscosity of alumina-engine oil: Effects of temperature and nanoparticles concentration. International Communications in Heat and Mass Transfer, 2016, 76, 202-208.	2.9	135
7	Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe. Energy Conversion and Management, 2016, 114, 38-49.	4.4	93
8	Nanofluid based on activated hybrid of biomass carbon/graphene oxide: Synthesis, thermo-physical and electrical properties. International Communications in Heat and Mass Transfer, 2016, 72, 10-15.	2.9	79
9	Adsorption capability of activated carbon synthesized from coconut shell. Carbon Letters, 2016, 20, 1-9.	3.3	74
10	Laminar convective heat transfer of hexylamine-treated MWCNTs-based turbine oil nanofluid. Energy Conversion and Management, 2015, 105, 355-367.	4.4	69
11	Entropy Generation during Turbulent Flow of Zirconia-water and Other Nanofluids in a Square Cross Section Tube with a Constant Heat Flux. Entropy, 2014, 16, 6116-6132.	1.1	61
12	Spongy nitrogen-doped activated carbonaceous hybrid derived from biomass material/graphene oxide for supercapacitor electrodes. RSC Advances, 2015, 5, 40505-40513.	1.7	59
13	Lignin-derived platform molecules through TEMPO catalytic oxidation strategies. Progress in Energy and Combustion Science, 2019, 72, 59-89.	15.8	55
14	Heat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channels. Powder Technology, 2015, 286, 332-341.	2.1	53
15	Numerical Investigation of Heat Transfer Enhancement in a Rectangular Heated Pipe for Turbulent Nanofluid. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	51
16	Nitrogen doped activated carbon/graphene with high nitrogen level: Green synthesis and thermo-electrical properties of its nanofluid. Materials Letters, 2015, 152, 192-195.	1.3	49
17	Experimental investigation on the use of reduced graphene oxide and its hybrid complexes in improving closed conduit turbulent forced convective heat transfer. Experimental Thermal and Fluid Science, 2015, 66, 290-303.	1.5	47
18	Convective heat transfer enhancement with graphene nanoplatelet/platinum hybrid nanofluid. International Communications in Heat and Mass Transfer, 2017, 88, 120-125.	2.9	41

SAMIRA GHAREHKHANI

#	Article	IF	CITATIONS
19	Kraft Lignin–Tannic Acid as a Green Stabilizer for Oil/Water Emulsion. ACS Sustainable Chemistry and Engineering, 2019, 7, 2370-2379.	3.2	33
20	Mathematical Modeling for Nanofluids Simulation: A Review of the Latest Works. , 0, , .		32
21	Sustainability and environmental impact of ethanol as a biofuel. Reviews in Chemical Engineering, 2014, 30, .	2.3	24
22	lon size, loading, and charge determine the mechanical properties, surface apatite, and cell growth of silver and tantalum doped calcium silicate. RSC Advances, 2016, 6, 190-200.	1.7	23
23	Experimental investigation on rheological, momentum and heat transfer characteristics of flowing fiber crop suspensions. International Communications in Heat and Mass Transfer, 2017, 80, 60-69.	2.9	20
24	Experimental investigation on thermo-physical properties and heat transfer characteristics of green synthesized highly stable CoFe2O4/rGO nanofluid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125923.	2.3	18
25	On-demand heat transfer augmentation using magnetically triggered ferrofluid containing eco-friendly treated CoFe2O4/rGO. Powder Technology, 2021, 378, 468-486.	2.1	11
26	Mechanochemical Synthesis and Characterization of Silver (Ag ⁺) and Tantalum (Ta ⁵ ⁺) Doped Calcium Silicate Nanopowders. Science of Advanced Materials, 2015, 7, 2664-2671.	0.1	9
27	Heat transfer performance of closed conduit turbulent flow: Constant mean velocity and temperature do matter!. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64, 285-298.	2.7	8
28	Dynamic measurement of ferrofluid thermal conductivity under an external magnetic field. Heat and Mass Transfer, 2019, 55, 1583-1592.	1.2	6
29	Heat transfer in turbulent nanofluids: Separation flow studies and development of novel correlations. Advanced Powder Technology, 2020, 31, 3120-3133.	2.0	6
30	The effect of nanocrystalline cellulose on flow properties of fiber crop aqueous suspension. Carbohydrate Polymers, 2018, 184, 376-382.	5.1	5
31	In-Situ Rheological Studies of Cationic Lignin Polymerization in an Acidic Aqueous System. Polymers, 2020, 12, 2982.	2.0	4
32	Extension of Weighted Sum of Gray Gas Data to Mathematical Simulation of Radiative Heat Transfer in a Boiler with Gas-Soot Media. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	1