
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1480581/publications.pdf Version: 2024-02-01

KATE E EOX

#	Article	IF	CITATIONS
1	Additive Manufacturing of Sustainable Construction Materials and Form-finding Structures: A Review on Recent Progresses. 3D Printing and Additive Manufacturing, 2022, 9, 12-34.	2.9	30
2	3D-printed concrete with recycled glass: Effect of glass gradation on flexural strength and microstructure. Construction and Building Materials, 2022, 314, 125561.	7.2	25
3	Bringing CT Scanners to the Skies: Design of a CT Scanner for an Air Mobile Stroke Unit. Applied Sciences (Switzerland), 2022, 12, 1560.	2.5	3
4	Liquid metal polymer composite: Flexible, conductive, biocompatible, and antimicrobial scaffold. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1131-1139.	3.4	12
5	Progress towards 3D-printing diamond for medical implants: A review. Annals of 3D Printed Medicine, 2021, 1, 100002.	3.1	10
6	Multifunctional Sutures with Temperature Sensing and Infection Control. Macromolecular Bioscience, 2021, 21, e2000364.	4.1	8
7	Surface roughness. , 2021, , 179-213.		4
8	Highly uniform polycrystalline diamond coatings of three-dimensional structures. Surface and Coatings Technology, 2021, 408, 126815.	4.8	10
9	Evaluating magnesium alloy WE43 for bioresorbable coronary stent applications. MRS Advances, 2021, 6, 54-60.	0.9	7
10	Single-Step Fabrication Method toward 3D Printing Composite Diamond–Titanium Interfaces for Neural Applications. ACS Applied Materials & Interfaces, 2021, 13, 31474-31484.	8.0	6
11	Diamond in the Rough: Toward Improved Materials for the Boneâ^'Implant Interface. Advanced Healthcare Materials, 2021, 10, e2100007.	7.6	15
12	Osteoblast Cell Response on Polycrystalline Diamond-Coated Additively Manufactured Scaffolds. ACS Applied Bio Materials, 2021, 4, 7509-7516.	4.6	4
13	Polycrystalline diamond coating on 3D printed titanium scaffolds: Surface characterisation and foreign body response. Materials Science and Engineering C, 2021, 130, 112467.	7.3	7
14	Surgical mesh coatings for infection control and temperature sensing: An in-vitro investigation. OpenNano, 2021, 5, 100032.	4.8	1
15	3D-Printed Diamond–Titanium Composite: A Hybrid Material for Implant Engineering. ACS Applied Bio Materials, 2020, 3, 29-36.	4.6	24
16	Hybrid diamond/ carbon fiber microelectrodes enable multimodal electrical/chemical neural interfacing. Biomaterials, 2020, 230, 119648.	11.4	41
17	Diamond in medical devices and sensors: An overview of diamond surfaces. Medical Devices & Sensors, 2020, 3, e10127.	2.7	10
18	In vivo feasibility of epiretinal stimulation using ultrananocrystalline diamond electrodes. Journal of Neural Engineering, 2020, 17, 045014.	3.5	4

#	Article	IF	CITATIONS
19	Iridescence and hydrophobicity have no clear delineation that explains flower petal micro-surface. Scientific Reports, 2020, 10, 10685.	3.3	4
20	Nanomaterials for Treating Bacterial Biofilms on Implantable Medical Devices. Nanomaterials, 2020, 10, 2253.	4.1	32
21	Fluorescent Nanodiamonds Embedded in Poly-ε-Caprolactone Fibers as Biomedical Scaffolds. ACS Applied Nano Materials, 2020, 3, 10814-10822.	5.0	10
22	Coatings on metallic implants for biomedical applications. , 2020, , 359-385.		2
23	High Fidelity Bidirectional Neural Interfacing with Carbon Fiber Microelectrodes Coated with Boronâ€Doped Carbon Nanowalls: An Acute Study. Advanced Functional Materials, 2020, 30, 2006101.	14.9	10
24	Electrospun Fibre Composite for Controlled Drug Release. MRS Advances, 2020, 5, 2409-2417.	0.9	2
25	Effects of polydopamine coatings on nucleation modes of surface mineralization from simulated body fluid. Scientific Reports, 2020, 10, 14982.	3.3	22
26	Metallic additive manufacturing for bone-interfacing implants. Biointerphases, 2020, 15, 050801.	1.6	13
27	High Nanodiamond Content-PCL Composite for Tissue Engineering Scaffolds. Nanomaterials, 2020, 10, 948.	4.1	19
28	Hermetic fusion of diamond micro-components with silicon. Diamond and Related Materials, 2020, 108, 107972.	3.9	3
29	Polypropylene-nanodiamond composite for hernia mesh. Materials Science and Engineering C, 2020, 111, 110780.	7.3	31
30	Is there a future for additive manufactured titanium bioglass composites in biomedical application? A perspective. Biointerphases, 2020, 15, 068501.	1.6	8
31	New insights into nickel-free superelastic titanium alloys for biomedical applications. Current Opinion in Solid State and Materials Science, 2019, 23, 100783.	11.5	36
32	Surface modification of medical devices at nanoscale—recent development and translational perspectives. , 2019, , 163-189.		18
33	The role of CdCl2 treatments and annealing in the formation of sintered CdTe nanocrystal solar cells. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 1199-1202.	2.1	9
34	Engineering the Interface: Nanodiamond Coating on 3D-Printed Titanium Promotes Mammalian Cell Growth and Inhibits <i>Staphylococcus aureus</i> Colonization. ACS Applied Materials & Interfaces, 2019, 11, 24588-24597.	8.0	60
35	Nanodiamond/poly-ε-caprolactone nanofibrous scaffold for wound management. Materials Science and Engineering C, 2019, 100, 378-387.	7.3	38
36	3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Biofabrication, 2019, 11, 035014.	7.1	47

#	Article	IF	CITATIONS
37	Rational design of additively manufactured Ti6Al4V implants to control Staphylococcus aureus biofilm formation. Materialia, 2019, 5, 100250.	2.7	45
38	<p>Immobilization of Antimicrobial Silver and Antioxidant Flavonoid as a Coating for Wound Dressing Materials</p> . International Journal of Nanomedicine, 2019, Volume 14, 9929-9939.	6.7	15
39	Diamond, Carbon Nanotubes and Graphene for Biomedical Applications. , 2019, , 97-107.		12
40	Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications. ACS Applied Materials & Interfaces, 2018, 10, 8474-8484.	8.0	61
41	The Application of Pulsed Electromagnetic Fields (PEMFs) for Bone Fracture Repair: Past and Perspective Findings. Annals of Biomedical Engineering, 2018, 46, 525-542.	2.5	62
42	<i>In vitro</i> cytotoxicity of iron oxide nanoparticles: effects of chitosan and polyvinyl alcohol as stabilizing agents. Materials Research Express, 2018, 5, 035051.	1.6	16
43	Nanostructured biomedical selenium at the biological interface (Review). Biointerphases, 2018, 13, 06D301.	1.6	24
44	Design, Fabrication and Validation of a Precursor Pulsed Electromagnetic Field Device for Bone Fracture Repair. , 2018, 2018, 4166-4169.		1
45	Angle defines attachment: Switching the biological response to titanium interfaces by modifying the inclination angle during selective laser melting. Materials and Design, 2018, 154, 326-339.	7.0	51
46	Novel hierarchical tantalum oxide-PDMS hybrid coating for medical implants: One pot synthesis, characterization and modulation of fibroblast proliferation. Journal of Colloid and Interface Science, 2017, 485, 106-115.	9.4	17
47	Diamond Devices for High Acuity Prosthetic Vision. Advanced Biology, 2017, 1, e1600003.	3.0	35
48	Bioprinting and Biofabrication with Peptide and Protein Biomaterials. Advances in Experimental Medicine and Biology, 2017, 1030, 95-129.	1.6	16
49	Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds. ACS Nano, 2017, 11, 10924-10934.	14.6	98
50	Suitability of nitinol electrodes in neural prostheses such as endovascular neural interfaces. , 2016, 2016, 4463-4466.		2
51	Nanodiamond-polycaprolactone composite: A new material for tissue engineering with sub-dermal imaging capabilities. Materials Letters, 2016, 185, 185-188.	2.6	28
52	Optimizing growth and post treatment of diamond for high capacitance neural interfaces. Biomaterials, 2016, 104, 32-42.	11.4	45
53	Brazing techniques for the fabrication of biocompatible carbon-based electronic devices. Carbon, 2016, 107, 180-189.	10.3	14
54	Development of a Magnetic Attachment Method for Bionic Eye Applications. Artificial Organs, 2016, 40, E12-24.	1.9	9

#	Article	IF	CITATIONS
55	The influence of sterilization on nitrogen-included ultrananocrystalline diamond for biomedical applications. Materials Science and Engineering C, 2016, 61, 324-332.	7.3	23
56	Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nature Biotechnology, 2016, 34, 320-327.	17.5	210
57	Diamond encapsulated photovoltaics for transdermal power delivery. Biosensors and Bioelectronics, 2016, 77, 589-597.	10.1	22
58	Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices. Materials, 2015, 8, 4992-5006.	2.9	11
59	Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids. Nanoscale, 2015, 7, 5998-6006.	5.6	14
60	Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys. Biomaterials, 2015, 53, 464-474.	11.4	39
61	Design of a Patterned Diamond Substrate for Ordered Neural Cell Adhesion. Procedia Technology, 2015, 20, 206-211.	1.1	2
62	Development of a Templated Approach to Fabricate Diamond Patterns on Various Substrates. ACS Applied Materials & Interfaces, 2014, 6, 8894-8902.	8.0	31
63	Fabrication of planarised conductively patterned diamond for bio-applications. Materials Science and Engineering C, 2014, 43, 135-144.	7.3	23
64	Multifunctional three-dimensional nanodiamond-nanoporous alumina nanoarchitectures. Carbon, 2014, 75, 452-464.	10.3	37
65	An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis. Biomaterials, 2014, 35, 908-915.	11.4	89
66	Diamond as a scaffold for bone growth. Journal of Materials Science: Materials in Medicine, 2013, 24, 849-861.	3.6	29
67	Ethical considerations for engineers working in cybernetic implants. , 2013, , .		1
68	Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications. Journal of Neural Engineering, 2012, 9, 016002.	3.5	100
69	Recent Advances in Research Applications of Nanophase Hydroxyapatite. ChemPhysChem, 2012, 13, 2495-2506.	2.1	110
70	Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials, 2012, 33, 5812-5820.	11.4	109
71	Building a bionic eye. Physics World, 2011, 24, 44-45.	0.0	0

1