Cheng Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1480549/publications.pdf Version: 2024-02-01

CHENCLIN

#	Article	lF	CITATIONS
1	GTOC 11: Results from Tsinghua University and Shanghai Institute of Satellite Engineering. Acta Astronautica, 2023, 202, 819-828.	3.2	6
2	Analytical shaping method for low-thrust rendezvous trajectory using cubic spline functions. Acta Astronautica, 2022, 193, 511-520.	3.2	7
3	Analytical Costate Estimation by a Reference Trajectory-Based Least-Squares Method. Journal of Guidance, Control, and Dynamics, 2022, 45, 1529-1537.	2.8	7
4	A Beam Search-Based Channel Allocation Method for Interference Mitigation of NGSO Satellites with Multi-Beam Antennas. Aerospace, 2022, 9, 177.	2.2	5
5	Adaptive neural network control of nonlinear systems with unknown dynamics. Advances in Space Research, 2021, 67, 1114-1123.	2.6	32
6	Multiconstrained Real-Time Entry Guidance Using Deep Neural Networks. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57, 325-340.	4.7	51
7	Warm Start for Low-Thrust Trajectory Optimization via Switched System. Journal of Guidance, Control, and Dynamics, 2021, 44, 1700-1706.	2.8	13
8	The feasibility criterion of fuel-optimal planetary landing using neural networks. Aerospace Science and Technology, 2021, 116, 106860.	4.8	27
9	Rapid generation of low-thrust many-revolution earth-center trajectories based on analytical state-based control. Acta Astronautica, 2021, 187, 338-347.	3.2	10
10	A New 3D Shaping Method for Low-Thrust Trajectories between Non-Intersect Orbits. Aerospace, 2021, 8, 315.	2.2	1
11	Minimum-time low-thrust many-revolution geocentric trajectories with analytical costates initialization. Aerospace Science and Technology, 2021, 119, 107146.	4.8	19
12	Fast solution continuation of time-optimal asteroid landing trajectories using deep neural networks. Acta Astronautica, 2020, 167, 63-72.	3.2	23
13	Fast Generation of Optimal Asteroid Landing Trajectories Using Deep Neural Networks. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 2642-2655.	4.7	47
14	Polynomial-based method for determining coast-terminating zero of fuel-optimal time-fixed trajectory. Astrophysics and Space Science, 2020, 365, 1.	1.4	0
15	Real-time optimal control for irregular asteroid landings using deep neural networks. Acta Astronautica, 2020, 170, 66-79.	3.2	79
16	An identifier-actor-optimizer policy learning architecture for optimal control of continuous-time nonlinear systems. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	2
17	Warm-Start Multihomotopic Optimization for Low-Thrust Many-Revolution Trajectories. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 4478-4490.	4.7	16
18	Real-time control for fuel-optimal Moon landing based on an interactive deep reinforcement learning algorithm. Astrodynamics, 2019, 3, 375-386.	2.4	49

CHENG LIN

#	Article	IF	CITATIONS
19	Real-Time Optimal Control for Spacecraft Orbit Transfer via Multiscale Deep Neural Networks. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55, 2436-2450.	4.7	72
20	Fuel-Optimal Low-Thrust Trajectory Optimization Using Indirect Method and Successive Convex Programming. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54, 2053-2066.	4.7	57
21	Optimization of observing sequence based on nominal trajectories of symmetric observing configuration. Astrodynamics, 2018, 2, 25-37.	2.4	19
22	A simple method to design non-collision relative orbits for close spacecraft formation flying. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	5.1	2
23	Power-limited low-thrust trajectory optimization with operation point detection. Astrophysics and Space Science, 2018, 363, 1.	1.4	14
24	Problem A of the 9th China trajectory optimization competition: Results found at Tsinghua University. Acta Astronautica, 2018, 150, 204-212.	3.2	7
25	Autonomous Navigation of Mars Probes by Single X-ray Pulsar Measurement and Optical Data of Viewing Martian Moons. Journal of Navigation, 2017, 70, 18-32.	1.7	10
26	Improving Low-Thrust Trajectory Optimization by Adjoint Estimation with Shape-Based Path. Journal of Guidance, Control, and Dynamics, 2017, 40, 3282-3289.	2.8	48
27	Systematic low-thrust trajectory optimization for a multi-rendezvous mission using adjoint scaling. Astrophysics and Space Science, 2016, 361, 1.	1.4	25
28	Capture of near-Earth objects with low-thrust propulsion and invariant manifolds. Astrophysics and Space Science, 2016, 361, 1.	1.4	29
29	Autonomous Navigation of Mars Probes by Combining Optical Data of Viewing Martian Moons and SST Data. Journal of Navigation, 2015, 68, 1019-1040.	1.7	9
30	Study on the connection between the rotating mass dipole and natural elongated bodies. Astrophysics and Space Science, 2015, 356, 29-42.	1.4	46
31	Extension of frozen orbits and Sun-synchronous orbits around terrestrial planets using continuous low-thrust propulsion. Astrophysics and Space Science, 2015, 360, 1.	1.4	4
32	Pseudospectral Methods for Trajectory Optimization with Interior Point Constraints: Verification and Applications. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49, 2005-2017.	4.7	39
33	Practical Techniques for Low-Thrust Trajectory Optimization with Homotopic Approach. Journal of Guidance, Control, and Dynamics, 2012, 35, 245-258.	2.8	263
34	Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization. Acta Astronautica, 2012, 71, 38-50.	3.2	82