
Tomoyuki Furuyashiki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1480344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The impact of stress on immune systems and its relevance to mental illness. Neuroscience Research, 2022, 175, 16-24.	1.0	17
2	Analysis of aging-induced neural dysfunctions and their biological basis. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2022, 95, 1-SS-43.	0.0	0
3	Deficient Autophagy in Microglia Aggravates Repeated Social Defeat Stress-Induced Social Avoidance. Neural Plasticity, 2022, 2022, 1-13.	1.0	19
4	Single-Cell RNA Sequencing Reveals a Distinct Immune Landscape of Myeloid Cells in Coronary Culprit Plaques Causing Acute Coronary Syndrome. Circulation, 2022, 145, 1434-1436.	1.6	14
5	Single-Shot 10K Proteome Approach: Over 10,000 Protein Identifications by Data-Independent Acquisition-Based Single-Shot Proteomics with Ion Mobility Spectrometry. Journal of Proteome Research, 2022, 21, 1418-1427.	1.8	37
6	The transcription factor Hhex regulates inflammation-related genes in microglia. Journal of Pharmacological Sciences, 2022, 149, 166-171.	1.1	5
7	Chronic social defeat stress increases the amounts of 12-lipoxygenase lipid metabolites in the nucleus accumbens of stress-resilient mice. Scientific Reports, 2022, 12, .	1.6	3
8	Repeated social defeat stress induces neutrophil mobilization in mice: maintenance after cessation of stress and strainâ€dependent difference in response. British Journal of Pharmacology, 2021, 178, 827-844.	2.7	20
9	Mobilization efficiency is critically regulated by fat via marrow PPARδ. Haematologica, 2021, 106, 1671-1683.	1.7	13
10	Resting-state dopaminergic cell firing in the ventral tegmental area negatively regulates affiliative social interactions in a developmental animal model of schizophrenia. Translational Psychiatry, 2021, 11, 236.	2.4	14
11	Correlation Between Lactic Acid Bacteria Beverage Intake and Stress Resilience. Kobe Journal of Medical Sciences, 2021, 67, E1-E6.	0.2	0
12	Stress-induced sleep-like inactivity modulates stress susceptibility in mice. Scientific Reports, 2020, 10, 19800.	1.6	10
13	Hop Bitter Acids Increase Hippocampal Dopaminergic Activity in a Mouse Model of Social Defeat Stress. International Journal of Molecular Sciences, 2020, 21, 9612.	1.8	6
14	Social defeat stress increased interfaces between microglia and neurons in the medial prefrontal cortex of mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 2-P-171.	0.0	0
15	Improvement of PTSD-like behavior by the forgetting effect of hippocampal neurogenesis enhancer memantine in a social defeat stress paradigm. Molecular Brain, 2019, 12, 68.	1.3	26
16	The Lacto-Tetrapeptide Gly–Thr–Trp–Tyr, β-Lactolin, Improves Spatial Memory Functions via Dopamine Release and D1 Receptor Activation in the Hippocampus. Nutrients, 2019, 11, 2469.	1.7	15
17	Social defeat stress-specific increase in c-Fos expression in the extended amygdala in mice: Involvement of dopamine D1 receptor in the medial prefrontal cortex. Scientific Reports, 2019, 9, 16670.	1.6	41
18	Leucine–Histidine Dipeptide Attenuates Microglial Activation and Emotional Disturbances Induced by Brain Inflammation and Repeated Social Defeat Stress. Nutrients, 2019, 11, 2161.	1.7	19

#	Article	IF	CITATIONS
19	Neural mechanisms underlying adaptive and maladaptive consequences of stress: Roles of dopaminergic and inflammatory responses. Psychiatry and Clinical Neurosciences, 2019, 73, 669-675.	1.0	21
20	Tryptophan-Tyrosine Dipeptide, the Core Sequence of β-Lactolin, Improves Memory by Modulating the Dopamine System. Nutrients, 2019, 11, 348.	1.7	22
21	Roles of multiple lipid mediators in stress and depression. International Immunology, 2019, 31, 579-587.	1.8	41
22	Social defeat stress induces phosphorylation of extracellular signalâ€regulated kinase in the leptomeninges in mice. Neuropsychopharmacology Reports, 2019, 39, 134-139.	1.1	7
23	Roles of Toll-like receptor 2/4, monoacylglycerol lipase, and cyclooxygenase in social defeat stress-induced prostaglandin E2 synthesis in the brain and their behavioral relevance. Scientific Reports, 2019, 9, 17548.	1.6	15
24	lsoâ€Î±â€acids, the bitter components of beer, improve hippocampusâ€dependent memory through vagus nerve activation. FASEB Journal, 2019, 33, 4987-4995.	0.2	23
25	Three-dimensional fluorescence imaging using the transport of intensity equation. Journal of Biomedical Optics, 2019, 25, 1.	1.4	19
26	Dopamine D1 receptor subtype mediates acute stress-induced dendritic growth in excitatory neurons of the medial prefrontal cortex and contributes to suppression of stress susceptibility in mice. Molecular Psychiatry, 2018, 23, 1717-1730.	4.1	82
27	Repeated social defeat stress impairs attentional set shifting irrespective of social avoidance and increases female preference associated with heightened anxiety. Scientific Reports, 2018, 8, 10454.	1.6	20
28	The Innate Immune Receptors TLR2/4 Mediate Repeated Social Defeat Stress-Induced Social Avoidance through Prefrontal Microglial Activation. Neuron, 2018, 99, 464-479.e7.	3.8	202
29	Ulk2 controls cortical excitatory–inhibitory balance via autophagic regulation of p62 and GABAA receptor trafficking in pyramidal neurons. Human Molecular Genetics, 2018, 27, 3165-3176.	1.4	39
30	Depressive-Like Behaviors Are Regulated by NOX1/NADPH Oxidase by Redox Modification of NMDA Receptor 1. Journal of Neuroscience, 2017, 37, 4200-4212.	1.7	50
31	G-CSF-induced sympathetic tone provokes fever and primes antimobilizing functions of neutrophils via PGE2. Blood, 2017, 129, 587-597.	0.6	45
32	mDia and ROCK Mediate Actin-Dependent Presynaptic Remodeling Regulating Synaptic Efficacy and Anxiety. Cell Reports, 2016, 17, 2405-2417.	2.9	32
33	Roles of dopaminergic systems and inflammation-related molecules derived from microglia in stress-induced behavioral changes. Pain Research, 2016, 31, 1-8.	0.1	0
34	The Loss of Lam2 and Npr2-Npr3 Diminishes the Vacuolar Localization of Gtr1-Gtr2 and Disinhibits TORC1 Activity in Fission Yeast. PLoS ONE, 2016, 11, e0156239.	1.1	8
35	Genetic Interactions among AMPK Catalytic Subunit Ssp2 and Glycogen Synthase Kinases Gsk3 and Gsk31 in Schizosaccharomyces Pombe. Kobe Journal of Medical Sciences, 2016, 62, E70-8.	0.2	2
36	Azoles activate Atf1â€mediated transcription through <scp>MAP</scp> kinase pathway for antifungal effects in fission yeast. Genes To Cells, 2015, 20, 695-705.	0.5	4

#	Article	IF	CITATIONS
37	The combined effect of clothianidin and environmental stress on the behavioral and reproductive function in male mice. Journal of Veterinary Medical Science, 2015, 77, 1207-1215.	0.3	64
38	Constitutive Tor2 Activity Promotes Retention of the Amino Acid Transporter Agp3 at Trans-Golgi/Endosomes in Fission Yeast. PLoS ONE, 2015, 10, e0139045.	1.1	14
39	Tor Signaling Regulates Transcription of Amino Acid Permeases through a GATA Transcription Factor Gaf1 in Fission Yeast. PLoS ONE, 2015, 10, e0144677.	1.1	15
40	The CCAAT/enhancer-binding protein delta/miR135a/thrombospondin 1 axis mediates PGE2-induced angiogenesis in Alzheimer's disease. Neurobiology of Aging, 2015, 36, 1356-1368.	1.5	33
41	Roles and Actions of Arachidonic Acid-Derived Bioactive Lipids in Stress-Related Behaviors. , 2015, , 315-328.		0
42	Characterization of Tamoxifen as an Antifungal Agent Using the Yeast Schizosaccharomyces Pombe Model Organism. Kobe Journal of Medical Sciences, 2015, 61, E54-63.	0.2	8
43	The Mlul Cell Cycle Box (MCB) Motifs, but Not Damage-Responsive Elements (DREs), Are Responsible for the Transcriptional Induction of the rhp51+ Gene in Response to DNA Replication Stress. PLoS ONE, 2014, 9, e111936.	1.1	2
44	Prostaglandin E Receptor EP1 Forms a Complex with Dopamine D1 Receptor and Directs D1-Induced cAMP Production to Adenylyl Cyclase 7 through Mobilizing GβγSubunits in Human Embryonic Kidney 293T Cells. Molecular Pharmacology, 2013, 84, 476-486.	1.0	15
45	EphA4â€dependent axon retraction and midline localization of <scp>E</scp> phrinâ€ <scp>B</scp> 3 are disrupted in the spinal cord of mice lacking <scp>mD</scp> ia1 and <scp>mD</scp> ia3 in combination. Genes To Cells, 2013, 18, 873-885.	0.5	9
46	Prostaglandin E2 regulates murine hematopoietic stem/progenitor cells directly via EP4 receptor and indirectly through mesenchymal progenitor cells. Blood, 2013, 121, 1995-2007.	0.6	43
47	Prostaglandin E ₂ -Mediated Attenuation of Mesocortical Dopaminergic Pathway Is Critical for Susceptibility to Repeated Social Defeat Stress in Mice. Journal of Neuroscience, 2012, 32, 4319-4329.	1.7	115
48	Roles of Dopamine and Inflammation-Related Molecules in Behavioral Alterations Caused by Repeated Stress. Journal of Pharmacological Sciences, 2012, 120, 63-69.	1.1	28
49	A role for mDia, a Rho-regulated actin nucleator, in tangential migration of interneuron precursors. Nature Neuroscience, 2012, 15, 373-380.	7.1	122
50	Role of PGE-type receptor 4 in auditory function and noise-induced hearing loss in mice. Neuropharmacology, 2012, 62, 1841-1847.	2.0	9
51	Orally administered rubiscolinâ€6, a δopioid peptide derived from Rubisco, stimulates food intake via leptomeningeal lipocallinâ€ŧype prostaglandin <scp>D</scp> synthase in mice. Molecular Nutrition and Food Research, 2012, 56, 1315-1323.	1.5	36
52	Stress responses: the contribution of prostaglandin E2 and its receptors. Nature Reviews Endocrinology, 2011, 7, 163-175.	4.3	99
53	Prostaglandin E2-mediated desensitization of mesocortical dopamine neurons is critical for susceptibility to repeated social defeat stress. Neuroscience Research, 2011, 71, e52.	1.0	0
54	Thromboxane receptor activation enhances striatal dopamine release, leading to suppression of GABAergic transmission and enhanced sugar intake. European Journal of Neuroscience, 2011, 34, 594-604.	1.2	13

#	Article	IF	CITATIONS
55	PGE ₂ â€EP ₂ signalling in endothelium is activated by haemodynamic stress and induces cerebral aneurysm through an amplifying loop via NFâ€PB. British Journal of Pharmacology, 2011, 163, 1237-1249.	2.7	155
56	Central PGE2exhibits anxiolytic-like activity via EP1and EP4receptors in a manner dependent on serotonin 5-HT1A, dopamine D1and GABAAreceptors. FEBS Letters, 2011, 585, 2357-2362.	1.3	22
57	Fever, inflammation, pain and beyond: prostanoid receptor research during these 25 years. FASEB Journal, 2011, 25, 813-818.	0.2	61
58	Deficiency of mDia, an Actin Nucleator, Disrupts Integrity of Neuroepithelium and Causes Periventricular Dysplasia. PLoS ONE, 2011, 6, e25465.	1.1	46
59	Roles of prostaglandin E2-EP4 signaling in functional hyperemia in the brain. Neuroscience Research, 2010, 68, e355.	1.0	0
60	Roles of thromboxane receptor in dopaminergic signaling in the striatum. Neuroscience Research, 2010, 68, e235.	1.0	0
61	Roles of mDia isoforms, a Rho effector, in neural development. Neuroscience Research, 2010, 68, e138.	1.0	0
62	Central control of fever and female body temperature by RANKL/RANK. Nature, 2009, 462, 505-509.	13.7	212
63	Prostaglandin E receptor EP1 enhances GABAâ€mediated inhibition of dopaminergic neurons in the substantia nigra pars compacta and regulates dopamine level in the dorsal striatum. European Journal of Neuroscience, 2009, 30, 2338-2346.	1.2	28
64	Roles of prostaglandin E receptors in stress responses. Current Opinion in Pharmacology, 2009, 9, 31-38.	1.7	41
65	Rat Orbitofrontal Cortex Separately Encodes Response and Outcome Information during Performance of Goal-Directed Behavior. Journal of Neuroscience, 2008, 28, 5127-5138.	1.7	54
66	Facilitation of Th1-mediated immune response by prostaglandin E receptor EP1. Journal of Experimental Medicine, 2007, 204, 2865-2874.	4.2	84
67	Prostaglandin E ₂ Acts on EP ₁ Receptor and Amplifies Both Dopamine D ₁ and D ₂ Receptor Signaling in the Striatum. Journal of Neuroscience, 2007, 27, 12900-12907.	1.7	48
68	Neural Encoding in the Orbitofrontal Cortex Related to Goalâ€Đirected Behavior. Annals of the New York Academy of Sciences, 2007, 1121, 193-215.	1.8	28
69	Molecular Identification and Characterization of a Family of Kinases with Homology to Ca2+/Calmodulin-dependent Protein Kinases I/IV. Journal of Biological Chemistry, 2006, 281, 20427-20439.	1.6	45
70	Enhanced cocaine responsiveness and impaired motor coordination in metabotropic glutamate receptor subtype 2 knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4170-4175.	3.3	140
71	Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16066-16071.	3.3	105
72	Molecular Cloning and Characterization of CLICK-III/CaMKIγ, a Novel Membrane-anchored Neuronal Ca2+/Calmodulin-dependent Protein Kinase (CaMK). Journal of Biological Chemistry, 2003, 278, 18597-18605.	1.6	50

Τομογικι Furuyashiki

#	Article	IF	CITATIONS
73	Control of axon elongation via an SDF-1α/Rho/mDia pathway in cultured cerebellar granule neurons. Journal of Cell Biology, 2003, 161, 381-391.	2.3	177
74	Impaired adrenocorticotropic hormone response to bacterial endotoxin in mice deficient in prostaglandin E receptor EP1 and EP3 subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4132-4137.	3.3	98
75	ROCK and mDia1 antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts. Journal of Cell Biology, 2002, 157, 819-830.	2.3	193
76	Multiple spatiotemporal modes of actin reorganization by NMDA receptors and voltage-gated Ca2+ channels. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14458-14463.	3.3	83
77	Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nature Cell Biology, 2001, 3, 8-14.	4.6	314
78	Citron, a Rho target that affects contractility during cytokinesis. , 2000, 49, 123-126.		42
79	A Critical Role for a Rho-Associated Kinase, p160ROCK, in Determining Axon Outgrowth in Mammalian CNS Neurons. Neuron, 2000, 26, 431-441.	3.8	284
80	Citron, a Rho-Target, Interacts with PSD-95/SAP-90 at Glutamatergic Synapses in the Thalamus. Journal of Neuroscience, 1999, 19, 109-118.	1.7	97
81	Rhotekin, a New Putative Target for Rho Bearing Homology to a Serine/Threonine Kinase, PKN, and Rhophilin in the Rho-binding Domain. Journal of Biological Chemistry, 1996, 271, 13556-13560.	1.6	313
82	A novel partner for the GTP-bound forms ofrhoandrac. FEBS Letters, 1995, 377, 243-248.	1.3	156