
Lian-ming Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1480060/publications.pdf Version: 2024-02-01

LIAN-MING YANG

#	Article	IF	CITATIONS
1	A Cationâ€Exchange Approach for the Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 6688-6692.	13.8	150
2	Direct Conversion of CH3NH3PbI3 from Electrodeposited PbO for Highly Efficient Planar Perovskite Solar Cells. Scientific Reports, 2015, 5, 15889.	3.3	83
3	Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains. Nature Communications, 2020, 11, 5402.	12.8	71
4	Roomâ€Temperature Nickelâ€Catalysed Suzuki–Miyaura Reactions of Aryl Sulfonates/Halides with Arylboronic Acids. European Journal of Organic Chemistry, 2011, 2011, 1467-1471.	2.4	61
5	Ni ^{II} –(Ïfâ€Aryl) Complex Catalyzed Suzuki Reaction of Aryl Tosylates with Arylboronic Acids. European Journal of Organic Chemistry, 2010, 2010, 2457-2460.	2.4	49
6	A novel compact DPP dye with enhanced light harvesting and charge transfer properties for highly efficient DSCs. Journal of Materials Chemistry A, 2013, 1, 4858.	10.3	47
7	Molecular design of triarylamine-based organic dyes for efficient dye-sensitized solar cells. New Journal of Chemistry, 2009, 33, 868.	2.8	43
8	Fabrication of methylammonium bismuth iodide through interdiffusion of solution-processed Bil ₃ /CH ₃ NH ₃ I stacking layers. RSC Advances, 2017, 7, 43826-43830.	3.6	40
9	A push–pull thienoquinoidal chromophore for highly efficient p-type dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 7695-7698.	10.3	36
10	Trihydrazine Dihydriodideâ€Assisted Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900285.	5.8	34
11	Nickel-catalyzed cross-coupling of carboxylic anhydrides with arylboronic acids. RSC Advances, 2014, 4, 53885-53890.	3.6	31
12	Triphenylamine-modified quinoxaline derivatives as two-photon photoinitiators. New Journal of Chemistry, 2009, 33, 1578.	2.8	29
13	Pyrazino[2,3-g]quinoxaline dyes for solar cell applications. Journal of Materials Chemistry A, 2014, 2, 14852-14857.	10.3	28
14	Facile Modification of a Noncovalently Fused-Ring Electron Acceptor Enables Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 45806-45814.	8.0	27
15	A Novel Strategy for Scalable Highâ€Efficiency Planar Perovskite Solar Cells with New Precursors and Cation Displacement Approach. Advanced Materials, 2018, 30, e1804454.	21.0	25
16	Ni(ii) source as a pre-catalyst for the cross-coupling of benzylic pivalates with arylboronic acids: facile access to tri- and diarylmethanes. RSC Advances, 2015, 5, 15338-15340.	3.6	22
17	Non-fullerene acceptor engineering with three-dimensional thiophene/selenophene-annulated perylene diimides for high performance polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 12601-12607.	5.5	21
18	Synthesis and Properties of Upper Rim Schiff Base Calix[4]arenes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 36, 327-333.	1.6	16

LIAN-MING YANG

#	Article	IF	CITATIONS
19	A novel ruthenium-free TiO2 sensitizer consisting of di-p-tolylaminophenyl ethylenedioxythiophene and cyanoacrylate groups. New Journal of Chemistry, 2009, 33, 1973.	2.8	16
20	Pyran-annulated perylene diimide derivatives as non-fullerene acceptors for high performance organic solar cells. Journal of Materials Chemistry C, 2018, 6, 11111-11117.	5.5	16
21	A–D–C–D–A type non-fullerene acceptors based on the benzotriazole (BTA) unfused core for organic solar cells. New Journal of Chemistry, 2021, 45, 12802-12807.	2.8	12
22	In-situ pulse electropolymerization of pyrrole on single-walled carbon nanotubes for thermoelectric composite materials. Chemical Engineering Journal, 2022, 443, 136536.	12.7	12
23	Nickel-catalyzed N-arylation of benzophenone hydrazone with bromoarenes. RSC Advances, 2014, 4, 3364-3367.	3.6	11
24	A Cationâ€Exchange Approach for the Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 6760-6764.	2.0	11
25	An Easy Route to <i>N</i> , <i>N</i> â€Diarylhydrazines by Cu atalyzed Arylation of Pyridineâ€2â€carbaldehyde Hydrazones with Aryl Halides. European Journal of Organic Chemistry, 2013, 2013, 862-867.	2.4	9
26	Two-step electrochemical modification for improving thermoelectric performance of polypyrrole films. Synthetic Metals, 2021, 282, 116949.	3.9	9
27	Full-Electrochemical Construction of High-Performance Polypyrrole/Tellurium Thermoelectrical Nanocomposites. ACS Applied Materials & amp; Interfaces, 2022, 14, 10815-10824.	8.0	9
28	Homo-Coupling of Terminal Alkynes Using a Simple, Cheap Ni(dppe)Cl ₂ /Ag ₂ O Catalyst System. Synthetic Communications, 2015, 45, 824-830.	2.1	7
29	A triptycene-cored perylenediimide derivative and its application in organic solar cells as a non-fullerene acceptor. New Journal of Chemistry, 2017, 41, 10237-10244.	2.8	6
30	Pyrazino-[2,3-f][1,10]phenanthroline as a new anchoring group of organic dyes for dye-sensitized solar cells. RSC Advances, 2015, 5, 46206-46209.	3.6	5
31	Regioselectively switchable alkyne cyclotrimerization catalyzed by a Ni(<scp>ii</scp>)/bidentate P-ligand/Zn system with ZnI ₂ as an additive. Organic Chemistry Frontiers, 2022, 9, 2357-2367.	4.5	5
32	From 1D to 3D: Fabrication of CH 3 NH 3 PbI 3 Perovskite Solar Cell Thin Films from (Pyrrolidinium)PbI 3 via Organic Cation Exchange Approach. Energy Technology, 2020, 8, 2000148.	3.8	4
33	Fineâ€Tuning Active Layer Morphology via Modification of Both Side Chains and Terminal Groups toward Highâ€Performance Organic Solar Cells. Energy Technology, 2022, 10, .	3.8	4
34	Terminal groups play an important role in enhancing the performance of organic solar cells based on non-fused electron acceptors. New Journal of Chemistry, 2022, 46, 10048-10054.	2.8	4
35	Small molecular thienoquinoidal dyes as electron donors for solution processable organic photovoltaic cells. RSC Advances, 2015, 5, 76666-76669.	3.6	3
36	<i>t</i> -BuOK-catalysed alkylation of fluorene with alcohols: a highly green route to 9-monoalkylfluorene derivatives. RSC Advances, 2019, 9, 35913-35916.	3.6	3

LIAN-MING YANG

#	Article	IF	CITATIONS
37	Pseudo <i>in situ</i> construction of high-performance thermoelectric composites with a dioxothiopyrone-based D–A polymer coating on SWCNTs. RSC Advances, 2021, 11, 8664-8673.	3.6	2
38	Fluorescent Nanotubes of D–ĩ€â€"A Dyes Formed at the Air/Water Interface. Journal of Dispersion Science and Technology, 2011, 32, 265-268.	2.4	1
39	Organic–inorganic hybrid perovskite for low-cost and high-performance xerographic photoreceptors. RSC Advances, 2021, 11, 21754-21759.	3.6	1
40	High performance achieved <i>via</i> core engineering and side-chain engineering in organic solar cells based on the penta-fused-ring acceptor. Journal of Materials Chemistry C, 2022, 10, 7724-7730.	5.5	1
41	Photoelectric Response from D–π–A Dye's Langmuir-Blodgett Monolayer Film Modified Indium-Tin Oxide Electrode. Journal of Dispersion Science and Technology, 2010, 32, 56-59.	2.4	0
42	Nickel-catalyzed synthesis of 9-monoalkylated fluorenes from 9-fluorenone hydrazone and alcohols. Synthetic Communications, 0, , 1-8.	2.1	0