Yogo Katsunori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1479623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Amine Structures on Oxidative Degradation of Amine-Functionalized Adsorbents for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2021, 60, 4942-4950.	1.8	19
2	Simulation-Based Optimization of Fixed-Bed Continuous CO ₂ Capture Process with an Amine-Impregnated Solid Sorbent. Industrial & Engineering Chemistry Research, 2021, 60, 9906-9914.	1.8	3
3	Enhancement of CO ₂ Adsorption/Desorption Properties of Solid Sorbents Using Tetraethylenepentamine/Diethanolamine Blends. ACS Omega, 2020, 5, 23533-23541.	1.6	26
4	Preparation of Si-rich LTA zeolite membrane using organic template-free solution for methanol dehydration. Separation and Purification Technology, 2020, 239, 116533.	3.9	21
5	Inhibitors of Oxidative Degradation of Polyamine-Modified Silica Sorbents for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 15598-15605.	1.8	14
6	Enhancement Mechanism of the CO ₂ Adsorption–Desorption Efficiency of Silica-Supported Tetraethylenepentamine by Chemical Modification of Amino Groups. ACS Sustainable Chemistry and Engineering, 2019, 7, 9574-9581.	3.2	20
7	Oxidative Degradation of Tetraethylenepentamine-Impregnated Silica Sorbents for CO ₂ Capture. Energy & Fuels, 2019, 33, 3370-3379.	2.5	24
8	Exploring the Role of Imidazoles in Amine-Impregnated Mesoporous Silica for CO2 Capture. Industrial & Engineering Chemistry Research, 2018, 57, 2638-2644.	1.8	21
9	Effect of isopropyl-substituent introduction into tetraethylenepentamine-based solid sorbents for CO2 capture. Fuel, 2018, 214, 14-19.	3.4	13
10	Carbon Dioxide Absorption using Solid Sorbents Incorporating Purified Components of Tetraethylenepentamine. Energy Technology, 2017, 5, 1186-1190.	1.8	15
11	Development of Post-combustion CO2 Capture System Using Amine-impregnated Solid Sorbent. Energy Procedia, 2017, 114, 2304-2312.	1.8	20
12	Highly efficient post-combustion CO2 capture by low-temperature steam-aided vacuum swing adsorption using a novel polyamine-based solid sorbent. Chemical Engineering Journal, 2017, 307, 273-282.	6.6	55
13	Response Surface Optimization of Impregnation of Blended Amines into Mesoporous Silica for High-Performance CO ₂ Capture. Energy & Fuels, 2015, 29, 985-992.	2.5	26
14	Development of Amine-impregnated Solid Sorbents for CO2 capture. Energy Procedia, 2014, 63, 2346-2350.	1.8	18
15	Carbon Dioxide Adsorption onto Polyethylenimine-Functionalized Porous Chitosan Beads. Energy & Fuels, 2014, 28, 6467-6474.	2.5	50
16	Large-Pore Mesostructured Silica Impregnated with Blended Amines for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2013, 52, 13810-13817.	1.8	75
17	Pore-fill-type Palladium–Porous Alumina Composite Membrane for Hydrogen Separation. Energy Procedia, 2013, 37, 1104-1108	1.8	4
18	Development of Amine-Modified Solid Sorbents for Postcombustion CO2 Capture. Energy Procedia, 2013, 37, 199-204.	1.8	12

Yogo Katsunori

#	Article	IF	CITATIONS
19	Isotherms and isosteric heats of adsorption for CO2 in amine-functionalized mesoporous silicas. Separation and Purification Technology, 2013, 120, 20-23.	3.9	89
20	Pure silica CHA type zeolite for CO2 separation using pressure swing adsorption at high pressure. Journal of Materials Chemistry, 2012, 22, 20186.	6.7	100
21	Development of an energy-saving CO2 -PSA process using hydrophobic adsorbents. Energy Procedia, 2011, 4, 803-808.	1.8	5
22	Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy, 2008, 33, 776-784.	4.5	226
23	Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous and Mesoporous Materials, 2005, 84, 357-365.	2.2	526
24	Development of a new CO2 fixation/utilization process (1)Recovery of calcium form steelmaking slag and chemical fixation of carbon dioxide by carbonation reaction. , 2005, , 2427-2430.		13