## Kurt C Marsden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1479323/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | NMDA Receptor Activation Potentiates Inhibitory Transmission through GABA Receptor-Associated<br>Protein-Dependent Exocytosis of GABA <sub>A</sub> Receptors. Journal of Neuroscience, 2007, 27,<br>14326-14337.      | 3.6 | 162       |
| 2  | Selective translocation of Ca <sup>2+</sup> /calmodulin protein kinase IIα (CaMKIIα) to inhibitory synapses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20559-20564. | 7.1 | 125       |
| 3  | Up-Regulation of Soluble Axl and Mer Receptor Tyrosine Kinases Negatively Correlates with Gas6 in<br>Established Multiple Sclerosis Lesions. American Journal of Pathology, 2009, 175, 283-293.                       | 3.8 | 89        |
| 4  | A Genome-wide Screen Identifies PAPP-AA-Mediated IGFR Signaling as a Novel Regulator of Habituation Learning. Neuron, 2015, 85, 1200-1211.                                                                            | 8.1 | 85        |
| 5  | InÂVivo Ca2+ Imaging Reveals that Decreased Dendritic Excitability Drives Startle Habituation. Cell Reports, 2015, 13, 1733-1740.                                                                                     | 6.4 | 62        |
| 6  | A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold. Cell<br>Reports, 2018, 23, 878-887.                                                                                       | 6.4 | 49        |
| 7  | A genetic basis for molecular asymmetry at vertebrate electrical synapses. ELife, 2017, 6, .                                                                                                                          | 6.0 | 42        |
| 8  | SNPfisher: tools for probing genetic variation in laboratory-reared zebrafish. Development (Cambridge), 2015, 142, 1542-52.                                                                                           | 2.5 | 39        |
| 9  | A Forward Genetic Screen in Zebrafish Identifies the G-Protein-Coupled Receptor CaSR as a Modulator of Sensorimotor Decision Making. Current Biology, 2018, 28, 1357-1369.e5.                                         | 3.9 | 39        |
| 10 | Electrical synaptic transmission requires a postsynaptic scaffolding protein. ELife, 2021, 10, .                                                                                                                      | 6.0 | 23        |
| 11 | mGluR and NMDAR activation internalize distinct populations of AMPARs. Molecular and Cellular<br>Neurosciences, 2011, 48, 161-170.                                                                                    | 2.2 | 22        |
| 12 | BMAA and MCLR Interact to Modulate Behavior and Exacerbate Molecular Changes Related to Neurodegeneration in Larval Zebrafish. Toxicological Sciences, 2021, 179, 251-261.                                            | 3.1 | 21        |
| 13 | Structural and functional properties of ryanodine receptor type 3 in zebrafish tail muscle. Journal of<br>General Physiology, 2015, 145, 173-184.                                                                     | 1.9 | 13        |
| 14 | A forward genetic screen identifies Dolk as a regulator of startle magnitude through the potassium channel subunit Kv1.1. PLoS Genetics, 2021, 17, e1008943.                                                          | 3.5 | 10        |
| 15 | The ubiquitin ligase PHR promotes directional regrowth of spinal zebrafish axons. Communications<br>Biology, 2019, 2, 195.                                                                                            | 4.4 | 9         |
| 16 | The Cyanotoxin 2,4-DAB Reduces Viability and Causes Behavioral and Molecular Dysfunctions<br>Associated with Neurodegeneration in Larval Zebrafish. Neurotoxicity Research, 2022, 40, 347-364.                        | 2.7 | 7         |
| 17 | Pioneer Axons Utilize a <i>Dcc</i> Signaling-Mediated Invasion Brake to Precisely Complete Their Pathfinding Odyssey. Journal of Neuroscience, 2021, 41, 6617-6636.                                                   | 3.6 | 6         |